Facultad de Ingeniería
URI permanente para esta comunidad
Examinar
Examinando Facultad de Ingeniería por Autor "Córdova, Felisa M."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Applying multi-criteria analysis in a port system(2017) Córdova, Felisa M.; Durán, ClaudiaThis work presents a study developed in a medium port system composed of 50 public and private actors interacting with their macro-environment, which can generate strategic synergistic relationships. In order to determine these synergistic links between their components, the strategic phrases contained in their missions are analysed and classified according to the multicriteria that are part of the macro-environment of each port actor: political, economic, social, technological, environmental, risk and learning. Likewise, new characterizations and classifications are proposed for groups and sub-groups of port actors. From absolute frequencies, Contingency Tables and the Chi-square test, quantitative results are obtained, which show the potential cases of strategic synergistic relations in the port system and the behavior of each group and sub-group of actors, as well as dependence / independence between every pair of criteria. Finally, it is verified that it is possible to use quantitative methods to analyze the strategic synergistic relationships between the actors of the port system.Ítem Design of an EEG analytical methodology for the analysis and interpretation of cerebral connectivity signals(Elsevier, 2022-02-20) Córdova, Felisa M.; Cifuentes, Hugo F.; Díaz, Hernán A.; Yanine, Fernando; Pereira, RobertinoThe objective of this study is to design an Electroencephalographic (EEG) analytic methodology that allows to develop a variety of analysis and interpretations of brain signals. The initial phase considers the acquisition and filtering of EEG signals, the division into bands in data ranges, and the storage of EEG signals in a cloud data base. Then, an analytical phase considering descriptive, predictive and prescriptive analysis is accomplished. A sequence of analytic intermediate processing steps is done in order to render a graphic visualization of significant correlations between pairs of EEG channels. Pearson correlation is utilized to detect synchronic connectivity through the brain areas. Time series in nearly instantaneous time lapses are treated by using Hilbert Huang Transform. An experimental design by submitting a set of students to an abbreviated version Raven visual test is made providing results in correlation maps of cerebral connectivityÍtem Reviewing homeostasis of sustainable energy systems: How reactive and predictive homeostasis can enable electric utilities to operate distributed generation as part of their power supply services(Elsevier, 2018) Yanine, Fernando; Barrueto, Aldo; Sanchez-Squella, Antonio; Tosso, Joshua; Córdova, Felisa M.; Rother, Hans C.Homeostatic control (HC) of electric power systems (EPS), particularly those that fall into the distributed generation (DG) category, can enable utilities to broaden their power supply services in line with industry changes worldwide while at the same time safeguarding their customers’ power supply against environmental challenges. Such solutions are being considered nowadays by industry giants like ENEL, by far the largest electric power utility operating in Chile. ENEL is seeking to tap into the DG market with a microgrid solution that can be installed in every building that is part of its customer base. In order to accomplish this, such DG solutions should first and foremost behave like sustainable energy systems (SES). For this they ought to emulate homeostasis mechanisms present in all living organisms. Both reactive homeostasis (RH) and predictive homeostasis (PH) enable living organisms to respond early and proactively to internal changes in the grid-tied DG system as well as to environmental challenges and threats. Particularly PH does so by foreseeing when these are most likely to occur, adjusting their energy intake and expenditure accordingly to maintain a stable, efficient and sustainable equilibrium. Based on the above, this paper presents a theoretical approach with an empirical base for engineering sustainability in hybrid energy systems. The project is part of a joint research initiative between a small group of university researchers and ENEL Distribucion, formerly Chilectra1 of Chile to develop a commercial prototype to be implemented in apartment buildings being serviced by ENEL throughout Santiago. This is important in order to advance DG solutions implemented by utilities like ENEL Distribucion, to further EPS decentralization, offer a broad, more flexible and personalized spectrum of services and, at the same time, preparing them for growing environmental challenges and threats.