ML models for severity classification and length-of-stay forecasting in emergency units

dc.contributor.authorCandia-Véjar, Alfredoes
dc.contributor.authorMoya-Carvajal, Jonathanes
dc.contributor.authorPérez-Galarce, Franciscoes
dc.contributor.authorTaramasco, Carlaes
dc.contributor.authorAstudillo, César A.es
dc.date.accessioned2023-04-21T20:46:13Z
dc.date.available2023-04-21T20:46:13Z
dc.date.issued2023-03-02
dc.description.abstractLength-of-stay (LoS) prediction and severity classification for patients in emergency units in a clinic or hospital are crucial problems for public and private health networks. An accurate estimation of these parameters is essential for better planning resources, which are usually scarce. Although it is possible to find several works that propose traditional Machine Learning (ML) models to face these challenges, few works have exploited advances in Natural Language Processing (NLP) on Spanish raw-text vector representations. Consequently, we take advantage of those advances, incorporating sentence embeddings in traditional ML models to improve predictions. Moreover, we apply a strategy based on SHapley Additive exPlanations (SHAP) values to provide explanations for these predictions. The results of our case study demonstrate an increase in the accuracy of the predictions using raw text with a minimum preprocessing. The precision increased by up to 2% in the classification of the patient’s post-care destination and by up to 8% in the prediction of LoS in the hospital. This evidence encourages practitioners to use available text to anticipate the patient’s need for hospitalization more accurately at the earliest stage of the care process.en
dc.identifier.citationExpert Systems With Applications, Vol. 223, N° 1 (2023)en_US
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2023.119864
dc.identifier.issn0957-4174en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2953-6522
dc.identifier.urihttp://hdl.handle.net/20.500.12254/3227
dc.language.isoenen
dc.publisherElsevieren_US
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Chile (CC BY-NC-SA 3.0 CL)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/cl/
dc.subjectLength-of-stay predictionen_US
dc.subjectApplied machine learningen_US
dc.subjectText embeddingsen_US
dc.subjectEmergency unitsen_US
dc.subjectExplanaible artificial intelligenceen_US
dc.titleML models for severity classification and length-of-stay forecasting in emergency unitsen_US
dc.typeArtículoes
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Final published ESWA.pdf
Tamaño:
1.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
638 B
Formato:
Item-specific license agreed upon to submission
Descripción:
Texto completo