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A B S T R A C T

Length-of-stay (LoS) prediction and severity classification for patients in emergency units in a clinic or hospital
are crucial problems for public and private health networks. An accurate estimation of these parameters is
essential for better planning resources, which are usually scarce. Although it is possible to find several works
that propose traditional Machine Learning (ML) models to face these challenges, few works have exploited
advances in Natural Language Processing (NLP) on Spanish raw-text vector representations. Consequently, we
take advantage of those advances, incorporating sentence embeddings in traditional ML models to improve
predictions. Moreover, we apply a strategy based on SHapley Additive exPlanations (SHAP) values to provide
explanations for these predictions. The results of our case study demonstrate an increase in the accuracy of
the predictions using raw text with a minimum preprocessing. The precision increased by up to 2% in the
classification of the patient’s post-care destination and by up to 8% in the prediction of LoS in the hospital.
This evidence encourages practitioners to use available text to anticipate the patient’s need for hospitalization
more accurately at the earliest stage of the care process.
1. Introduction

The collapse of emergency units (EUs) is a latent problem for health
decision-makers. This issue severely affects the whole health system
by reducing the quality of care and patients’ welfare and increas-
ing operative costs. Moreover, it has a higher risk of death for the
patients (Jo et al., 2015). Specifically, the quality of care decreases
exponentially with the waiting time in EUs. This problem has sev-
eral sources, e.g., limited resources for planning (beds, wards, and
teams) and unpredictable demand peaks. Most of them related to an
underlying uncertainty for the planning.

The purpose of a EUs is to provide immediate health care to any
patient who consults spontaneously or is referred by another facility in
the network. Typically, an EU care team diagnoses and treats people at
risk of life-threatening, chronic disease decompensation, relieving pain,
and treating emergencies that cannot be postponed. They decide which
patients continue their treatment as inpatients or outpatients.

In emergency units, patients’ total LoS is composed of the time in
care and the waiting time between stages of the care process. Within
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these waiting times, both the waiting time for medical care and the
waiting time for hospitalization is the most critical. In this research, we
focus on the latter. Long waiting times for hospitalization beds in the
EU come from three leading causes: (i) the low rotation and availability
of hospital beds, forcing staff to use beds and stretchers to observe
emergency patients (Hoot & Aronsky, 2008) (when a patient requires
observation), (ii) the high demand for hospital beds, which patients
additionally use from different sources, such as patients referred from
the EU, other units within the same hospital, and another hospital in the
same healthcare network and outpatients (Marfil-Garza et al., 2018).
The high demand for beds is due, in general, to the increase of chronic
diseases in the country and, in the last two years, to the rise of com-
municable diseases (e.g., COVID19). The origin of the patients does not
imply an increase in demand. (iii) the delay in the medical discharge
of a hospitalized patient may affect the availability of hospital beds. In
summary, all the causes mentioned above generate a low availability
of hospital beds and, consequently, a delay in the hospitalization of
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Nomenclature

LoS Length-of-stay
ML Machine Learning
NLP Natural Language Processing
SHAP SHapley Additive exPlanation
EUs Emergency Units
ICD 9 International classification of Diseases

version 9
AUC ROC Area Under the Receiver Operating Char-

acteristic curve
SOM Self Organizing Maps
RST Rough Set Theory
ANN Artificial Neural Networks
MLP Multilayer Perceptron
DSS Decision Support Systems
UMLS Unified Medical Language System
CT Computed Tomography
BOW Bag of Words
PCA Principal Components Analysis
TF-IDF Term Frequency-Inverse Document Fre-

quency
MSE Mean Squared Error
MAE Mean Absolute Error
ICU Intensive Care Unit
LIME Local interpretable model-agnostic ex-

planations
CNN Convolutional Neural Networks
CDSS Clinical Decision Support Systems
P.C.S. Primary Care Service
HGT Blood Sugar Level
LCFA Chronic Airflow Limitation
ECG Whether the patient had an EKG
FR Breathing Rate
SATO2 Blood Oxygen Saturation
DM Presence of Diabetes Mellitus
EVA Airway Evaluation

patients, and this is a crucial bottleneck. In EUs, the triage stage
aims to categorize the level of risk and thus prioritize the wait for
emergency care, there is still no certainty as to the patient’s diagnosis
or whether they will require hospitalization. Nonetheless, the patient’s
severity level is determined according to their vital signs. Considering
the above-mentioned, determining the need for hospitalization and
the LoS would allow more efficient bed management to streamline
procedures. In this context, ML models have been widely used to
provide accurate predictions. Parva, Boostani, Ghahramani, and Paydar
(2017) presented a set of situations such as classifying patients in
Triage, identifying patients who are genetically predisposed to certain
diseases, and developing decision support systems for disease diagnosis.
Then, various of models have been used in medical applications, such as
prediction, classification, regression, and clustering algorithms (Azeez,
Gan, Ali, & Ismail, 2015; Ceglowski, Churilov, & Wassertheil, 2005;
Sariyer, Öcal T., & Cepe, 2019). Each of these articles addresses the use
of ML tools to solve problems specific to a particular type of disease
or focuses only on one of the stages of the care process. In recent
years, increasingly complex and effective ML and deep learning models
have been developed for ML. However, few provide explanations for
these models, and some are black box ML models. In healthcare, it is
essential to be sure that the results can be trusted, as a mistake can
have unfortunate consequences for the well-being of patients. For this
2

reason, we include model interpretability as part of the methodology
for implementing ML models in healthcare as a decision support tool.
Surprisingly, few authors consider the interpretability of their results
as part of their study, so this article aims to contribute from two points
of view to the state of the art of ML in healthcare. First, by using NLP
techniques to process free text and include interpretability in our results
in order to make it easier for health professionals to use these models
in their usual diagnostic procedures.

We propose using raw text and traditional features generated in
the different stages of the patient care process in an EUs which are
saved in the hospital’s electronic clinical record. There are free-text
fields within the electronic records in which nurses and admissions staff
enter information that could be of great relevance when categorizing
patients through triage and diagnosing them at the care stage. These
free-text fields are, for example, the reason for consultation, where the
patient indicates what motivated his or her talk to the health service,
and the ailments that the patient describes during the registration and
triage processes. This questionnaire is carried out by health personnel
to identify information relevant to the diagnosis. It mainly consists of
inquiring about the patient’s symptoms and perceptions regarding the
consultation and whether they have any diseases, allergies, or other
irregularities that are important in determining the patient’s treatment.
Another text field is generated by the treating physician, where they
record treatment indications for patients after diagnosing them. In this
text field, the physician indicates the medications to be administered,
for how long, and in what quantity. Both areas are usually discarded
from the study data set due to the complexity of understanding and
adapting this information. It is generally presented unstructured and
usually introduces technicalities, acronyms, and typing errors that are
challenging to handle.

Our research proposes applying models and algorithms of ML to
predict emergency patients’ severity levels and hospitalization needs in
the early stages of care. For this purpose, two datasets from an EU and
a hospitalization unit were processed, including records corresponding
to the year 2018. By using this information, an experimental dataset
of 7848 cases was constructed. In addition, unstructured text fields,
usually discarded from this type of study, will be incorporated into
the classification model. We propose a model-agnostic method, incor-
porating sentence embedding to improve predictions, considering the
severity classification and LoS prediction. Also, we enriched the data
by integrating event description records written in Spanish obtained
from EUs in the triage step. Our methodology integrates explainability
techniques and an ad-hoc meaningful discovery experiment to facili-
tate understanding the model and feature relevance. Our experiments
improve when including text descriptions compared to models using
standard features in severity classification and LoS prediction, en-
couraging practitioners to extract this valuable information from text
records.

The remainder of the article organizes as follows: Section 2 provides
a literature review about ML models in EUs for severity classification
and LoS prediction. Subsequently, Section 3 defines a sequential predic-
tion methodology based on the evolution of the patient during the care
process. Then, Section 4 details the experimental results considering
classification and regression models. Finally, Section 5 specifies the
conclusions and main findings.

2. Literature review

The following literature review is divided three fold. In Section 2.1,
papers that have addressed patient severity estimation through ML
models are presented. In Section 2.2, we discuss papers that have pro-
posed methods for predicting patients’ LoS in hospital units. Section 2.3
provides articles that have used text information to make predictions
in healthcare contexts and EUs. Finally, in Section 2.4, we present a
summary of the main interpretability approaches for ML models.
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2.1. Severity classification

In recent decades, with the increasing availability of information
in the health information systems, multiple research studies have been
developed to support the process of classifying the severity of patients,
commonly called triage. Until some time ago, triage was performed
intuitively, relying on the experience of the examiner. Over time,
patient triage methodologies have emerged around the world, using
the patient’s vital signs as the basis for decision-making (St George,
1992). Classification methodologies such as the Emergency Severity
Index (Jafari-Rouhi, Sardashti, Taghizadieh, Soleimanpour, & Barzegar,
2013) and the Manchester Triage System (Soler, Gómez Muñoz, Bragulat,
& Álvarez, 2010) are widely used. In both methodologies, vital signs
are contrasted with acceptance ranges that allow the examiner to
categorize the patient’s level of severity (St George, 1992).

Various authors have focused on improving this patient classifica-
tion procedure using ML models to make more precise and reduce
the need for extensive experience to classify patients correctly. Lin
et al. (2010) addressed the correction of abnormal triage classifications
based on attributes with incorrect values. For this purposed, the authors
propose the use of the k-means algorithm and decision trees. They took
a sample of 501 erroneous triage records and reclassified them using
an alternative to the usual triage methodology. The researchers applied
clustering to the data to group them into similar records and then used
decision trees to establish rules for analyzing each cluster’s records
based on patient pressure, temperature, and pulse rate. Based on these
results, they developed patient classification rules using the vital signs
recorded during the triage process. It is an interesting result, however
these rules have to be updated periodically.

Camilloni et al. (2010) and Seymour et al. (2013) applied linear
and logistic regressions, respectively, to predict patient severity. Both
articles presented vital signs measured in the triage stage as necessary
sources of information, such as oximetry, pulse, heart rate, and blood
pressure. Camilloni et al. (2010) showed that the regression models
proposed can accurately predict the patient’s final state. For this pur-
pose, they analyzed about 264,000 records, which were characterized
according to the International classification of Diseases version 9 (ICD
9) Centers for Medicare and Medicaid Services and National Center for
Health Statistics (2017). The results obtained by the authors showed
that the use of linear regressions for the data set studied provide a more
accurate classification of the severity of the patients concerning the
Injury Severity Score classification system, showing an increase from
0.66 to 0.77 in the Area Under the Receiver Operating Characteristic
curve (AUC ROC) for traffic accidents.

Lin, Wu, Zheng, and Chen (2011) proposed the use of Rough Set
Theory (RST), which is a technique that obtains hidden information
in the data, no matter how messy, after a previous classification using
clustering techniques such as k-means and Self Organizing Maps (SOM).
In this way, the authors identified the data that presented insufficient
or confusing information. They then applied RST using ROSE2’’ soft-
ware to this data. The software identified patterns and classification
rules that simplified the necessary attributes, which facilitated the
categorization of this subset of data. The authors then applied the
rules learned to estimate the severity category of the patients with the
preprocessed data.

Mathew and Obradovic (2012) presented an adaptation of the dis-
tributed decision tree model, based on the id3 algorithm. The article
shows the use of distributed data from nine U.S. hospitals, obtained
from the National Inpatient Sample. The main contribution here was to
eveloping a methodology for predictions with little data, less than
ne hundred records per hospital. Seymour et al. (2013) proposed,
n addition to the use of vital signs as primary biomarkers, the use
f specific biomarkers corresponding to the most frequent diseases
hat represent a greater risk for patients, such as cardiac diseases.
3

he biomarkers were entered into the regression model by simulating
their behavior, obtaining accurate results when reclassifying frequent
diseases in the EU.

Azeez, Ali, Gan, and Saiboon (2013) used artificial neural networks
(ANN) to predict the severity level of patients. It is proposed to use
information from the anamnesis to make predictions of patient’s sever-
ity index. To process this information, the author suggested the use of
the CEDIS system (Grafstein, Unger, Bullard, Innes, et al., 2003), which
classifies ailments, by assigning them numeric values that facilitate
their use a fuzzy neural network, an adaptive neuro-fuzzy interference
system, is proposed in the article. This neural network allows the
aggregation of expert judgments through the logical operators IF-THEN,
being able to improve the results of a standard multilayer perceptron
(MLP). An MLP is a generalization of the neural network. It groups
a defined set of simple perceptrons, incorporating layers of hidden
neurons for the representation of nonlinear functions.

Azeez et al. (2015) presented prediction models based on decision
trees, with a reduced amount of data. To increase the efficiency of their
models, they developed preprocessing tools for unbalanced data. For
this purpose, the authors designed several experiments with different
amounts of data generated by resampling, generating data with 150%
of the resampled data, increasing the amount of data up to 500%. Then,
with the data not used in training, they calculated the accuracy of each
experiment, which ranged between 85% and 88%. The method used
was randomized resampling and obtained better results by resampling
the data at 300% and 700 trees in the structure.

Hong, Haimovich, and Taylor (2018) applied deep learning, XG-
Boost, and logistic regressions, to predict the severity category of
patients, developing three datasets with information from EU records.
The first dataset contains information on patients’ reports in the regis-
tration stages and the vital signs acquired in triage. The second dataset
includes historical records of each patient, including a history of their
vital signs, laboratory tests, among others. Finally, the third dataset
corresponds to the union of the previously described datasets to develop
predictions with the totality of the available data. Using this dataset
offered the best results in terms of sensitivity and specificity for all
the tested algorithms. The authors also proposed post-processing of the
models to experiment on two relevant aspects. The first one was to
omit some variables from the data because they do not contribute much
information to the result, managing to reduce the dimensionality of the
models and without notably impacting the accuracy of the result. They
also tested the influence of reducing the size of the data sample. The
method that delivered the best results was XGBoost, with a sensitivity
index of 0.83 and a specificity index of 0.85.

Raita et al. (2019) compared logistic regression with gradient
boosted random forest and neural networks to identify which prediction
method gave the best results. Gradient boosted random forest presented
better results both on patient classification and the prediction of
hospitalization. It showed sensitivity and specificity values superior to
the other models studied. In this type of study, it is common to find
incomplete or very disordered data, complicating their treatment and
predicting variables.

There are several applications of ML models that allow us to make
predictions or classify patients according to a set of data. In health,
its development has shown an important growth, improving the capa-
bilities of disease detection, patient classification, among other func-
tionalities. Recently, several authors have made use of text processing
techniques with the aim of retrieving useful information from medical
records, using ML models to learn more about the care processes and
the importance of the features fed to the models. NLP techniques
have been used in several areas such as linguistics in the detection of
words in translation tools, audio-to-text transformation and vice versa,
sentiment analysis, and spam detection in emails. In health, there is an
inexhaustible source of free medical text developed during and for the
purpose of carrying out patient care processes in the various areas of
medicine. In the following section we will review some research linking
the use of NLP techniques with medical records generated in the patient

care process, with various applications.
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2.2. LoS prediction

The use of ML has also been considered in predicting the LoS in
a hospital. Tu and Guerriere (1992) presented the application of a
neural network to determine the LoS of coronary surgery patients in
Canada during the years 1990 and 1991. The authors describe the
experience by commenting that the network achieved a root mean
square error of 0.056 on the test set and 0.0564 with a collection of
28,000 records, demonstrating the ability of ANNs as a predictor of the
LoS in a hospital. Jiang, Qu, and Davis (2010) analyzed patients with
the four most prevalent chronic diseases in those over 65 years old,
who, as mentioned in the article, have a higher tendency to stay longer
in hospital. Four ML models were applied to evaluate the effectiveness
of each in predicting the LoS. The following models were compared:
logistic regression, MLP, decision trees, and a combination of them. The
results showed that the mixture achieved the best results. In addition,
age and chronic disease were reported as the most valuable predictors
within the dataset available.

Marfil-Garza et al. (2018) used multivariate regression and logistic
regression tools to determine the variables corresponding to character-
istics of hospitalized patients that have the most significant influence
on the duration of their stay in the hospital. They concluded that the
variables that have the most significant impact on hospitalization time
are gender, with men staying longer in hospital, age, older adults, and
low socioeconomic level.

Sariyer et al. (2019) developed a patient classification process and
applied the methodology for predicting LoS to each subgroup. The
subgroups were formed based on similarities between patient diagnoses
described by the dataset, relying on the international ICD10 classi-
fication. The authors used MLP, random forest, decision trees, and
logistic regression. The results were evaluated in terms of sensitivity,
specificity, and accuracy. Logistic regression and MLP were the most
efficient prediction models.

In summary, over time, there have been numerous efforts to support
the decisions associated with the classification of patients and to study
the reasons and causes of the time required for hospitalization. For this
purpose, ML tools have been used and have reported interesting results,
generally better than the traditional methodologies, i.e. score systems
based on expert knowledge (Wilding & Evans, 2017), for making such
decisions. Moreover, there is free-text information generated at various
stages of the care process that, in practice, are of great importance when
classifying a patient or deciding to request hospitalization. Therefore,
we will analyze how to integrate this free-text information into the ML
models studied, specifically with records that represent the description
of the event, which details the symptoms that motivated the patient to
come to the EU.

2.3. NLP applied to health prediction problems

Demner-Fushman, Chapman, and McDonald (2009) presented a
review of the contributions that NLP has made to the field of medicine.
NLP tools are an essential part of decision support systems (DSS)
used for more than 40 years with good results. The research divides
these systems into two active and passive tools. The active ones corre-
spond to systems that develop automatically with existing information
previously registered. On the other hand, the passive support tools
require a user who enters new data into the system. They also de-
veloped a classification in general-purpose systems, such as Linguistic
String Project, Medical Language Processor, and MedLEE, among oth-
ers. These systems transform narrative physician records, without great
specification, into a structured form, with the support of controlled,
specialized vocabulary (Demner-Fushman et al., 2009). Another classi-
fication presented by the authors is specialized systems, among which
they mention clinical event monitors that identify adverse events in
patient discharge records. Radiological report processors are another
4

common use for specialized NLP systems. The Special Purpose Radi-
ology Understanding System, Natural language Understanding System
and Symbolic text processor are examples of this classification of
systems SymText. They use radiological reports to detect patterns,
for example, the presence or absence of acute pneumonia bacteria in
pulmonary radiographs.

Another type of specialized system is those that process emer-
gency department reports. The authors comment on the experience
of Chapman, Fiszman, Dowling, Chapman, and Rindflesch (2004), who
developed free text mapping of emergency patients records, with the
software MetaMap, of emergency patient records, seeking to identify
acute lower respiratory syndrome in them. They used three meth-
ods that related the records to the Unified Medical Language System
(UMLS). In results, the authors reported an accuracy of 0.72, which is
acceptable considering the limitations indicated, based on the handling
of the software and the lack of keywords, for certain records, in the
UMLS system.

Claster, Shanmuganathan, and Ghotbi (2008) developed a method-
ology for obtaining information from medical records for patients
undergoing radiology. Aware of the effect of repeated exposure to ion-
izing radiation, the authors sought to identify in the records, through
text mining, the keywords in the records of indications for computed
tomography(CT) scans, symptomatic description of the patients, and
comments on the results of such examinations. So, this would make
it possible to classify the cases in which the test was necessary and
those in which it was not through a correlation analysis between words
related to favorable and unfavorable cases regarding the need for the
test.

Bacchi et al. (2020) applied prediction algorithms to the LoS and
referral destination of patients by obtaining information from free-text
medical records, extracting the information using NPL techniques such
as tokenization, transforming words to word stems, and then applying
data mining algorithms to predict the variables described. In their
results, they showed that by mixing the data obtained through NPL
and algorithms such as neural networks, decision trees, and logistic
regressions. They were able to predict with an accuracy close to 0.88
the LoS of patients, under a sample of 313 patients, with a test segment
of 15%.

Recently, research has emerged that attempts to make use of NLP
techniques to improve predictions of relevant events in medicine. We
will now review some of the articles that have experimented with this
aspect.

Amunategui, Markwell, and Rozenfeld (2015) proposed two
methodologies to transform the free-text into numeric data useful for
training ML models. The first method proposed consists of manually
selecting a bag of words (BOW), which the authors consider important
for predicting patient hospitalization. Then, they use Word2vec, which
is a classic approach to vectorially represent words (Mikolov, Chen,
Corrado, & Dean, 2013), to obtain the most similar words. The second
method consisted of performing clustering of the vectors obtained by
Word2vec, with the complete set of text, in 50 clusters generated by
k means. The resulting vectors in each method were used to train an
adaptive boost model, obtaining an AUC ROC of 0.63 and 0.61 in each
respective experiment.

Sterling, Patzer, Di, and Schrager (2019) worked the prediction of
patient hospitalization, using free text obtained from notes generated
by nurses during the patient review. They used the BOW technique to
process the text, which consists of counting the frequency with which
certain words occur in the documents analyzed. Then, using principal
components analysis (PCA), they reduce the dimensionality of the text
vector obtained by BOW and use it to develop predictions by classifying
patients considering as an outcome a dichotomous variable indicating
whether the patient is hospitalized or discharged to home care. To
measure the model’s effectiveness, the authors propose the AUC ROC
curve as a metric, with the values 0.737, 0.740, and 0.687 with three

sets of text used independently.
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Chen et al. (2020) proposed a methodology to explore the potential
of NLP processing in LoS prediction, using a mixture of structured data
and physician records during patient examination. To do so, the au-
thors developed a preprocessing of the text logs, removing punctuation
marks, stop words, and capitalization. Then, a frequency-inverse docu-
ment frequency (TF-IDF) is used, they created a vector representation
of the text by counting the words present in the text and normalizing
the data, obtaining a data matrix useful to feed ML models. Their results
show a good performance of the models provided by text data, with an
average mean squared error (MSE) of 3 h and an average mean absolute
error (MAE) of 1.5 h.

Bacchi et al. (2020) proposed a methodology to use free text as
the primary input for training classification and regression models to
estimate the LoS of patients in an emergency unit. To transform the
text, the authors preprocessed the text by reducing conjugated verbs
to word stems, i.e., words such as improve, improvement, improving,
are reduced to improv. In addition, they eliminated stop words and
negations such as painful and not painful. After that, the authors
develop arrays with the frequency count of the obtained word stems.
With the processed text plus numeric data, the authors developed clas-
sification and regression experiments to determine the LoS of patients.
For classification models, they obtained accuracy results of 0.82 with
neural networks. For regression models, they got an MAE of 2.9 and an
MSE of 16.8.

Bardak and Tan (2021) developed a methodology based on the
use of convolutional neural networks using data from three different
text sources to improve predictions of patient’s LoS in the EU. They
developed a preprocessing of the text using an entity extraction model
from the text, identifying seven different entities. Subsequently, they
made use of several embedding models such as Word2vec, Doc2vec,
and Fastext, which together with convolutional networks developed
four prediction scenarios to predict: patient’s in-hospital mortality in
intensive care unit (ICU) mortality, a LoS of more than three days and
a LoS of more than seven days. They used Area Under the Receiver
Operating Characteristics (AUC-ROC) as evaluation metric, obtaining
mean values of 85, 86, 69, and 71, respectively, for each scenario.
After analyzing the results, the authors emphasized the importance of
the interpretability of results in ML and how these can be an excellent
precedent to establish relationships between vital markers, as analyzed
variables and the results obtained.

2.4. Interpretability for ML models in healthcare

Interpretability and explicability are two fundamental concerns for
the application of the ML models in health. Interpretability is the degree
to which a human can consistently predict the model’s result (Kim, Khanna,
& Koyejo, 2016). It is the ability to understand the behavior of the
results of a ML model, i.e., to understand why a prediction model
made such predictions or classifications. Explicability is instead about
understanding how ML models work. Thus, explainability is about
being able to explain in human terms how a ML model works.

Stiglic et al. (2020) developed a review of the main approaches
to the use of interpretability techniques applied to the understanding
of ML models in various areas of healthcare. Some of the techniques
mentioned by the authors in interpretability techniques in health-
care are SHAP, Model Understanding through Subspace Explanations,
Local interpretable model-agnostic explanations (LIME), and graph
neural networks. The authors commented about the importance of in-
terpretability in ML models for treating physicians and end-users of the
models who could see the interpreted results, trends, and information
about patients or diseases that might not be easy to see. For example,
the authors mentioned a case in which SHAP was used to interpret
predictions for the prevention of hypoxemia during surgery, which
increased by 15% the anesthesiologist’s anticipation of hypoxemia
5

events.
ElShawi, Sherif, Al-Mallah, and Sakr (2020) proposed a collection of
outcome explainability techniques for ML models in healthcare, briefly
describing six of them. The methods described are LIME, SHAP, and
Anchors.

LIME proposed in Ribeiro, Singh, and Guestrin (2016) is a technique
that trains local surrogate models to explain individual predictions.
Local surrogate models are easily interpretable models used to describe
individual predictions of classical ML models. In this way, the predic-
tions of surrogate models are explained using a dataset corresponding
to permuted samples of the original data plus forecasts generated by
the ML model to be analyzed. The results of these surrogate models
are weighted by closeness to the original data in the hope of achieving
a model that can be compared with the ML model that was initially
employed.

Anchors proposed in Ribeiro, Singh, and Guestrin (2018) is a local
explanation technique based on rules of the LIME technique. In An-
chors, variables are reduced to certain conditions called anchors used
to generate the prediction. Anchors considers the original data set,
and then it generates an anchor. Anchors are constructed based on If-
Then rules to find the features of the input data responsible for the
prediction. Anchors start with an empty rule, and at each iteration,
the rule is expanded with a feature such that the new rule has the
highest estimated accuracy. To select the best rule at each iteration,
the KL-LUCB algorithm is used.

Subsequently, the authors performed experiments to compare the
techniques by measuring their five metrics: identity, stability, separabil-
ity, similarity, and execution time. The results highlight SHAP, in terms
of execution time and, in terms of identity, MAPLE, a model proposed
by Plumb, Molitor, and Talwalkar (2019), that combine local linear
modeling techniques along with a dual interpretation of random forests,
and . The authors concluded that the importance of interpretability lies
mainly with clinicians, who are still unfamiliar with these prediction
techniques and therefore reluctant to consider their results as valid
information. They also point out that more and more robust models
are designed to obtain better accuracy but are very complex to under-
stand. Hence the importance of including interpretability techniques to
improve the interpretation of results.

Jia, McDermid, Lawton, and Habli (2021) developed an investiga-
tion regarding the importance of explainability in the development and
analysis of ML projects. To do so, they start by describing the need for
security in the development of engineering processes applied to health
systems, pointing out the differences between verification of the tool
with its correct implementation and its validation, emphasizing the re-
sults obtained. Subsequently and with the development of a case study,
they implemented a model of convolutional neural networks (CNN),
logistic, regression, support vector machine, random forest and decision
trees, in two instances for predicting patient readiness for extubation so
as to avoid the negative side effects of mis-timed extubation. The results
obtained by CNN were analyzed using DeepLIFT which is a model-
specific explainable AI method for deep NNs, obtaining a ranking of
features from the most important for prediction to the least important.
Finally, and with the results obtained, the authors present the argu-
ments and proofs that guarantee that the applied models provide an
acceptable safety in the case that it is implemented in a health system.

Amann, Blasimme, Vayena, Frey, and Madai (2020) developed a
multidisciplinary analysis of the importance of the relevance of explain-
ability for medical AI from a technological, legal, medical and patient
point of view. To this end, the authors developed an analysis from two
aspects. First, they delve into the relevance of explainability in clinical
decision support systems (CDSS), from the technological, legal, medi-
cal, and patient perspectives. technological, legal, medical, and patient
perspective, identifying the main ethical implications involved in the
use of these systems for health decision support. From the technological
point of view, the authors mention that there are cases in which ML
models generate false positives and damage the confidence that health

professionals can have in their implementation as a decision support
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tool, they also mention that the use of explainability techniques, allow
developers to identify these They also mention that the use of explain-
ability techniques allows developers to identify these types of errors
before AI tools go through the clinical validation and certification
process. In legal terms, the authors comment on the rigor with which
sensitive data must be acquired, stored, transported, processed and
analyzed, complying with the respective legal regulations for the type
of data being considered in the analysis. From a medical point of view,
the authors mention that it is possible to compare AI-based CDSS with
laboratory tests where ML models are represented as a black box unlike
laboratory tests where the biochemical reactions that trigger the results
are clearly known. However, AI-based CDSSs have steadily improved
their performance and the use of explainability techniques has favored
the acceptance of these systems by clinicians. However, these systems
must still be subjected to rigorous clinical validation and certification
systems.

From the patient’s perspective, the authors mention that patients
should be aware of the use of these systems and they should be
approved by them to be used in their medical treatment, making them
aware of the risks involved in the use of this type of CDSS. In this
way, explainability could improve the understanding of the results of a
CDSS, both by physicians and patients to correctly evaluate the possible
treatments to be used from the diagnosis.

Finally, with all the analyses performed, the authors present the
ethical implications of the use of ML and AI-based tools in healthcare,
indicating that they are based on four key principles: autonomy, benef-
icence, nonmaleficence, and justice. As for autonomy, it is represented
by informed consent, which is an autonomous authorization, usually
written, with which the patient grants a physician permission to per-
form a given medical act. Beneficence translates into making use of
AI-based tools, only with the aim of improving the patient’s service
quality, improving diagnoses and response times to the needs of care.

3. Data and methodologies

In this section, all the steps of our methodological approach are pre-
sented. First, in Section 3.1, we present the three dependent variables
of our study in detail. Then, in Section 3.2, the methods used in each
stage are presented. Finally, in Section 3.3, the implementation details
are described. Fig. 4 presents a graphical abstract that illustrates the
methodology used in this research.

3.1. Data set

According to Santelices and Santelices (2017), Chile is one of the
countries with the highest rates of emergency care per 1000 inhabi-
tants, with 571 visits per 1000 inhabitants per year, surpassing coun-
tries such as the United States with 445 visits per 1000 inhabitants
per year, Canada with 440 visits per 1.000 inhabitants per year, and
the United Kingdom with 360 visits per 1.000 inhabitants per year.
Chile ranks 99th in the number of hospital beds with 2.1 beds per 1000
inhabitants, below Brazil, which has 2.3 beds per 1000 inhabitants, and
below Uruguay, which has 2.5 beds per 1000 inhabitants.

The Hospital San Juan de Dios de Curicó is a hospital facility of
high technical complexity. It is the base of the health network of the
province of Curicó and part of the health care network of the Maule
Health Service in which participating hospitals are in the towns of
Molina, Teno, Linares, Cauquenes, and Parral, among others. According
to data provided by hospital workers, in 2018, this EU had 17 ob-
servation beds plus 14 examination couches, where outpatient care is
provided to pediatric and adult patients. In addition, 92,338 emergency
consultations were performed that year. The Curicó Hospital provided
two patient care records, corresponding to the hospital EU and the
hospitalization unit, obtained during 2018. One corresponded to the
records of the consulting patients of the EU during 2018, and another
one presented the hospitalized patients that indicated their diagnosis
6

and days of hospitalization. Both datasets were combined, obtaining
a unified dataset with which, after the described preprocessing tasks,
the available data sample is reduced to 7848 records. datasets were
provided anonymized by the hospital’s statistics department.

The experimentation was conducted in three stages of patient care:
categorization, diagnosis of the patient’s destination, and the hospital-
ization time for those patients who required it. Each of these stages was
analyzed independently, although data from previous steps were used
for the experimentation in later stages, i.e., for stages such as diagnosis.

3.1.1. Target variables

Severity category (step 1). It is carried out in the first stage of the
care process, in which information is requested from the patient. The
patient’s registration data, the reason for consultation, vital signs, and
medical history are available at this stage. This information makes
it possible to classify patients according to severity level using data
mining tools. The severity category is data of the ordinal categorical
type. Fig. 1 presents the proportion in which the different severity
categories of patients registered in the EU during 2018 are distributed.
Originally there were five levels of severity, level 5 being the level
corresponding to patients who did not present an emergency and did
not have to attend an EU but a health facility of lower complexity. The
records associated with this type of patient were those with the most
significant missing data. When pre-processing and data cleaning tasks
were carried out, they were discarded due to their limited usefulness.
The variables with the least amount of missing data were selected.
Some variables with missing data were imputed, but when the missing
data percentage was bigger than 60%, the variable was deleted from
the experiments.

Patient destination (step 2). After being diagnosed, the patient is
treated according to the doctor’s indications and placed under obser-
vation for some time. After analyzing the evaluation of the patient’s
treatment, the patient’s possible destination is determined: discharge,
hospitalization, referral to a health institution of higher complexity,
or referral to a health institution of lower complexity, among others.
Data describing the possible destinations of the patient corresponds to
the categories. Fig. 2 indicates the possible patient destination after
being diagnosed by a physician. Among the possible destinations are
hospitalization, a category of particular interest to us in this research
since it is directly related to the third step of analysis that we proposed,
estimating the LoS of hospitalized patients. A Primary Care Service
(P.C.S.) is a health entity of lesser complexity, generally located in
residential areas, that functions as an intermediary between patients
and the E.U., resolving minor ailments or stabilizing patients with a
high severity level and transferring them by ambulance to the E.U.

LoS (step 3). In this stage, there is information on registration and
triage, in addition to the severity index classification and diagnosis
obtained in previous steps. The need for hospitalization is a dichoto-
mous variable; if it is positive, the length of hospitalization should be
predicted as a numeric variable. Fig. 3 shows a histogram of patient
hospitalization time records, corresponding to the year 2018 provided
by the hospital. By joining the datasets corresponding to emergency
records plus the records corresponding to the hospital’s inpatient unit, a
large percentage of patients with zero days of hospitalization appeared.
These corresponded to patients who were either discharged or referred
to another health facility. The rest of the data corresponded to the
original records in the dataset of the hospitalization unit and these were
mainly distributed between 1 and 40 days of stay. There are records
with a longer LoS; however, these were so infrequent that they were
atypical data in the records.
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Fig. 1. Target variable stage 1. Severity index category where C1 represents the highest
severity level and C4 is used to classify the lowest severity level.

Fig. 2. Target variable stage 2. Destination type category after disgnostication. D1 is
home, D2 is another destination, D3 is a primary care service, D4 correspond to being
hospitalized and D5 be transferred to another hospital.

3.1.2. Standard features
Data was divided into two parts. Registration data, which indicates

patient information before any medical intervention, and Triage data,
where vital sign measurement indicators are obtained. However, these
indicators, such as blood pressure, respiratory rate, are the ones that
mainly present missing data. Then, in the care stage, records without
diagnosis and patient data with incomplete records were eliminated
due to desertion from the system during the various stages of care.

Triage data corresponds to data recorded up to the triage stage,
among them: age, severity index, prognosis, HGT (blood sugar level),
LCFA (chronic airflow limitation), ECG (Whether the patient had an
7

Fig. 3. Target variable stage 3, Length of stay in hospitalization unit.

EKG), Glasgow (measures the patient’s level of consciousness), breath-
ing rate (FR), blood oxygen saturation (SATO2), sex (SEX), airway eval-
uation (EVA) and presence of diabetes mellitus (DM). Table 1 describes
each variable’s type of data, in addition to the classification/prediction
stage used.

Care data corresponds to data recorded up to the care stage di-
agnosis, represented by a code from the international classification
of diagnoses CIE10 and destination: discharge, hospitalization, and
referral to another facility, among others. More information on the
variables is presented in Table 2. Both datasets have a unique ID per
query, so we decided to link them into a single dataset containing the
records of the patients seen in the EU and the records associated with
patients hospitalized during the study period.

The severity of the patient is determined in terms of the hospi-
tal’s triage index, the possible diagnosis considering the ICD10 coding
provided by Centers for Medicare and Medicaid Services and National
Center for Health Statistics (2017), the need for a hospital bed, and the
expected LoS, in days, in case of hospitalization.

3.1.3. Raw text from event description
We use the free-text data of text records annotated by technicians

and nurses when carrying out the triage process. In such records,
health professionals indicate why the patient comes to the EU and
mention whether they have comorbidities or pre-existing diseases that
may affect their current health status. The text records are incomplete,
poorly written, or have acronyms and medical technicalities unknown
to us. If processed, it would be necessary to go through the records in-
dividually to decipher each sentence’s relevant elements using common
words. However, apart from being complex, this task would require
the support of someone with sufficient medical knowledge to interpret
the records, which would take a long time. Table 3 presents some text
records in the:Event description feature.

3.2. Methods

Our method, whose graphical abstract is presented in Fig. 4, is di-
vided into three parts. The first step considers data processing, cleaning,
imputation, and transforming, including the raw-text representation
using Word2vec. The second phase focuses on the training model
and related decisions (e.g., hyperparameter tuning, oversampling, and
dimensionality reduction). Lastly, step three presents a strategy to
provide model-agnostic explanations for ML predictions.
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Table 1
Description of data available in the dataset.

Variable Minimum Maximum Mean Mode Type Variable Step

Age 15 126 42 – Numeric Independent 1-2-3
HGT 11 600 145 – Numeric Independent 1-2-3
FR 3 99 18.54 – Numeric Independent 1-2-3
SATO2 96 100 97.10 – Numeric Independent 1-2-3
LCFA – – – – Binary Independent 1-2-3
Glasgow 3 15 14.94 – Numeric Independent 1-2-3
SEX – – – – Categorical Independent 1-2-3
DM – – – – Binary Independent 1-2-3
EVA – – – – Binary Independent 1-2-3
Diagnosis – – – – Categorical Independent 1-2-3
Category 1 5 – 3 Numeric Target 1
Destiny – – – – Categorical Target 2
LoS – – – – Numeric Target 3
Fig. 4. Graphical Abstract presents all the activities developed in the proposed methodology divided into three stages. (1) Data preprocessing, (2) Model training and (3) Model
interpretability.
Table 2
Sources of information during the care process.

Stage Information

Registration Name, age, sex and hometown
Triage Vital signs and Event description
Patient care Patient diagnosis and indication for treatment
Observation Indication of treatment according to the patient’s evolution.
Hospitalization Indication for hospitalization
Medical discharge LoS

3.2.1. Word embedding generation

A big step in NLP was generated by Word2vec, an algorithm de-
veloped by Mikolov et al. (2013) to vectorially represent words and
position them in a multidimensional space that respects the similarity
between them. Mikolov et al. (2013) trained the algorithm with billions
of words, significantly exceeding the volumes of information used for
training by previously developed algorithms such as N-gram or NNLM.
8

To get representations for each Spanish words 𝑤 from the anamnesis
process using Word2vec model 𝑔 ∶ 𝑤 → 𝐱1×300𝑤 ∈ R, we used a model
trained with 2.6 billion Spanish words (Cañete, 2019). The corpus con-
sists of Spanish words obtained from various sources, including Spanish
Wikipedia entries, Open subtitles, and TED talk subtitles, among other
sources.

By preprocessing a subset of data composed of the event description,
a record details the ailments that motivated the patient to go to an EU
and whether the patient has pre-existing conditions that could influ-
ence the patient’s categorization and diagnosis. A vector representation
𝐱1×300𝑤 ∈ R of each word 𝑤 was obtained together, which formed the
sentence contained in the event description field. Each of the vector
representations of a sentence was averaged to receive an average vector
of the sentence as follows:

�̄�𝑠 =
1
𝑙𝑤

𝑙𝑤
∑

𝑤
𝐱𝑤,

where 𝑙𝑤 is the sentence length. This representations is used to train
regression and classification models.
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Table 3
Example of a free-text record corresponding to the variable: Event description, taken at random from 130.021
text records. Recorded in the patient registration process and completed during the triage process. The words
in bold are those that could be vectorized. The row under each expression corresponds to the translation
(e.g. 1E is the English translation for 1S) of words recognized by the embedding generator (in bold type).
# Description

1S TRAÍDO X CARABINEROS PARA CONSTATACIÓN DE LESIONES .
+ ALCOHOLEMIA NO APLICA LA EVALUACIÓN DE SIGNOS VITALES.

1E { brought, police, injury, breathalyzer test. }
{ vital signs, evaluation, not apply}

2S TRAÍDA POR INGESTA MEDICAMENTOSA, POLIFARMACIA. PCTE GLASGOW
PTS.PACIENTE RECHAZA EVALUACIÓN DE SUS SIGNOS VITALES.

2E { brought, medication intake, polypharmacy }
{GLASGOW 8, patient, rejects, Vital signs, evaluation}

3S PACIENTE DERIVADO DESDE LICANTEN POR
DERRAME PLEURAL IZQUIERDO

3E {Patient, referred, Licanten, left, pleural, effusion.}

4S PCTE CON FX DE TIBIA DERECHA. INMOVILIZADA CON YESO. RX OK.
PARA EV POR TMT

4E { Right tibia, inmobilized, cast }
t
o
m
d
o
c
c
I
L

3.2.2. Data preprocessing
Having two datasets, we selected all the structured variables re-

lated to the predictions we wanted to provide from them. For the
severity classification, in stage 1, we chose all the data from the
patient’s vital signs record in the triage process. We identified the
missing data for each variable, selected those with sufficient quantity
to perform imputation, and discarded the rest. The second dataset,
from hospitalization, had variables that matched those chosen in the
EU dataset, so we merged them and discarded the duplicate variables,
unifying the datasets. We imputed the missing values of the selected
numeric variables by the mean with the unified datasets, while the most
frequent category did it with the categorical variables.

For categorization, the patient’s severity category was predicted
using information from the patient registry, which included: age, sex,
commune, temperature, and pressure, among others. A number rep-
resents each piece of information. In the case that a variable may
take multiple values, as with the ‘‘sex’’ category, binary variables were
created to designate whether or not a record belonged to a specific cat-
egory (dummy variables). In this way, the available data was adapted
to represent a number for use in the previous prediction algorithms. In
addition, standardization and normalization were applied to the dataset
to avoid disparity in the scale on which the data was expressed.

We used PCA to reduce the dimensionality of the data. PCA is a tech-
nique that allows us to transform a set of variables into another set of
smaller dimensions but with an equivalent amount of information. This
set of new variables is called principal components, and they are not
correlated with each other. They are ordered according to the size of
the variance and in descending order. In this way, the first components
describe most of the variance of the original data. Therefore, they are
the most useful for the analysis; the rest with minimum variance values
can be discarded for their lack of contribution.

3.2.3. Model training
The categories presented a significant imbalance, with classes rep-

resenting a percentage close to 2% of the complete data set. In contrast,
the most frequent ones accounted for close to 40% of the entire
data set. For this reason, we apply SMOTE-TOMEK to improve the
effectiveness of the predictions. This is because classes such as life-
threatening (C1) or non-severe (C5) are very rare and therefore with
few records in the dataset. For this reason we experimented by perform-
ing predictions with balanced data using subsampling, oversampling
and SMOTE-TOMEK methods. The technique that generated the best
results after class balancing was SMOTE-TOMEK, using class balancing
as a strategy. The technique that generated the best results after balanc-
9

ing the classes was SMOTE-TOMEK, using as a strategy to balance the p
Table 4
ML models implemented at each prediction stage.

Step Step 1 Step 2 Step 3
Severity level Patient destination LoS in hospitalization

Type of target Categorical Categorical Numeric

Model Decision trees
Random Forests
Logistic regression
MLP

Decision trees
Random Forests
Logistic regression
MLP

Decision trees
Random Foreest
Lasso Regression
MLP

minority classes with respect to the majority classes, balancing them to
approximately 3200 records for each class.

To improve the quality of predictions, we use columns with text
written by the health professionals who assisted the patient in the
different stages. The information in these columns could not be treated
as a categorical variable because of the complexity of categorizing such
text since there would be practically no matches. For this reason, it is
not typically considered in this type of experiment. We used Word2vec,
which allowed us to transform each word to compose the text records
into a vector, and thus each sentence and the complete record as an
average vector of such vectors. It is to say, each word composing
the sentence describing the event was transformed into a vector, and
all the vectors generated for a sentence were averaged into a single
average vector representing the complete sentence. These vectors of
300 components were added to the previously processed numeric data,
making predictions accurate. The Tables 5, 6 and 9 demonstrate the
improvement in the quality of the results.

To improve the performance of the ML models used in the exper-
iments (see Table 4), we decided to apply grid search to optimize
the search for the appropriate hyperparameters for each model. The
models and their respective hyperparameters are described below. The
experiments were conducted using the following models:

Logistic Regression: It is primarily a data analysis technique, al-
hough, due to its versatility, it is widely used to study the relationship
f a dependent variable, dichotomous or multinomial. It has one or
ore independent variables, measuring its sign, whether the depen-
ence is direct or inverse, and determining the probability of an event
ccurring as a function of the independent variables. When applying
ross-validation grid search (5-fold) to adjust the hyperparameters, we
onsidered varying the value of parameter C in a range of (0.1,1,.10).
n addition, we defined three alternatives for the regularization of L1,
2, and elastic net.
Decision Trees: Decision trees are statistical models that allow the
rediction of data analytics based on their classification according to
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specific characteristics or properties or regression through the relation-
ship between different variables to predict the value of another. We
considered modifying the following to train the model: the splitting
evaluation criterion, considering Gini and entropy. In addition we
considered a range of values for the tree depth, which varied between
3 and 21. Finally, we defined the minimum number of objects by leaf
between 2 and 100.

Random Forest: This approach is a combination of predictive
ecision trees. Each tree evaluates the independent variables by binary
ests at each node, constituting the tree’s branches. The grid search
onsidered the space previously described for decision trees. We also
ncluded the number of estimators ranging from 100 to 500.

Multi Layer Perceptron (MLP): A directed acyclic graph (DAG)
efines a mapping between Euclidean spaces. The nodes and their
onnections (weights) in this DAG emulate the behavior of neural
etworks in the brain. This model can be used for classification and
egression tasks. Each node or neuron performs simple activation oper-
tions over a linear combination of weights and inputs. The parameters
djusted by the grid search strategy are the following: the activation
unction (tanh and relu functions), optimizer (SGD and Adam), penalty
arameter (0.0001 and 0.05), learning rate (constant and adaptive).
hree different structures were evaluated for the MLP, three hidden

ayers of 50 neurons, three hidden layers with 50, 100, and 50 neurons,
ith one hidden layer of 100 neurons.
Lasso Regression: A traditional regression that minimizes the resid-

al error squared, with an additional component focused on shrinking
ts parameters towards zero, restricts the regression coefficients. This
odel sacrifices bias to reduce the variance of prediction. Moreover,

he reduction in the number of predictors simplifies the parameter
nterpretation. The grid search selects the value for this penalty param-
ter, evaluating the following set of alternatives {0.005, 0.02, 0.03, 0.05,
0.06}.

3.2.4. Model assessment
This section presents the metrics for each step (classification and

regression) and the validation strategies. For classification steps (step
1 and step 2), we have used the following metrics:

Accuracy =
Number of correct predictions
Total number of predictions ,

hich measures the percentage of cases that the model got right.

1-score = 2
(

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙

)

,

which combines the precision and recall measures into a single value.
This is practical because it makes it easier to compare the combined
performance of accuracy and completeness between various solutions.
F1 is calculated by taking the harmonic mean between precision and
recall.

For regression, we have selected the following metrics:

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑡=1
𝑒2𝑡 ,

𝐴𝐷 = 1
𝑛

𝑛
∑

𝑡=1
|𝑒𝑡|,

where 𝑒𝑡 = 𝑦𝑡 − �̂�𝑡, being 𝑦𝑡 and �̂�𝑡 the real and predicted value,
espectively. Minimum, maximum, and 𝑅2 were also considered to
ssess the prediction quality.

We applied a cross-validation (5 folds) grid search to validate these
etrics and select hyperparameters. The parameters used for each
10

odel are presented in Section 3.2.3. d
3.2.5. Model interpretability
We apply interpretability techniques to understand the performance

of the applied ML models and the behavior of the variables used
in predicting and classifying response variables. A key concept in
these techniques is an additive feature attribution method. It has an
explanation model that is a linear function of binary variables. It is
assumed that 𝑓 is the original prediction model and 𝑔 is the explanation
model. The focus is local methods designed to explain a prediction 𝑓 (𝑥)
based on a single input 𝑥. Typically, explanation models use simplified
inputs 𝑥′ that map to the original inputs through a mapping function
𝑥 = ℎ𝑥(𝑥′). The aim of the local methods is to ensure 𝑔(𝑧′) approximates
(ℎ𝑥(𝑧′)) whenever 𝑧′ approximates 𝑥′.

(𝑧′) = 𝜙0 +
𝑀
∑

𝑖=1
𝜙𝑖𝑧

′
𝑖 ,

here 𝑧′ ∈ {0, 1}𝑚, 𝑀 is the number of simplified input features, and
𝑖 ∈ R.

According to the definition above, methods with explanation models
ttribute an effect to each feature. Summing the effects of all feature
ttributions approximates the original model’s output 𝑓 (𝑥). Several cur-
ent methods, like LIME and classic Shapley Value Estimation, follow
his approach. SHAP (SHapley Additive exPlanations) method satisfies
hree crucial properties: Local accuracy, Missingness, and Consistency.
significant result establishes that for a given simplified input mapping
𝑥, there is only one possible additive feature attribution method,
ee Lundberg and Lee (2017a).

SHAP values of a conditional expectation function of the original
odel were proposed as a suitable measure of feature importance.

HAP values provide the unique additive feature importance measure
hat satisfies the above properties and uses conditional expectations
o define simplified inputs. This definition of SHAP values uses a
implified input mapping ℎ𝑥(𝑧′) = 𝑧𝑆 , where 𝑆 is the set of non-zero
ndexes in 𝑧′, and 𝑧𝑆 has missing values for features not in the set 𝑆.
ince most models cannot handle arbitrary patterns of missing input
alues, 𝑓 (𝑧𝑆 ) is approximated with 𝐸[𝑓 (𝑧)|𝑧𝑆 ]. Given the complexity
f the exact computation of SHAP values, it can be approximated by
ombining insights from current additive feature attribution methods.

Another technique we used was Permutation Importance, which is
technique that allows inspecting ML models by removing a variable

rom the dataset and then retraining the model to evaluate the impact
n some metric such as accuracy or 𝑅2. To avoid retraining the estima-
or, the variable is replaced by random noise, i.e., the variable is still
here but no longer contains valuable information. This method works
f the noise is drawn from the same distribution as the original values
f the features. This random noise is obtained by alternating the values
f the same variable to lose efficiency in the model’s training.

.3. Implementation

The proposed method was implemented using Python 3.7. The
ollowing libraries are the most crucial for reproducing our results:

Scikit-Learn: methods for preprocessing, ML models (e.g., Logis-
tic Regression, RF, Lasso Regression, Multilayer perceptron, PCA),
cross-validation methods, and metrics for assessing models. (Pe-
dregosa et al., 2011)
Pandas: Library used for reading and managing datasets (McKin-
ney et al., 2011)
Shap: Package which contains functions for providing explain-
ability to predictions (Lundberg & Lee, 2017b)
Gensim: Library used for processing the free-text data (Rehurek
& Sojka, 2010)
Spanish embeddings: The Spanish word embeddings used were
pretrained by Cañete (2019)

astly, the source code will be available at https://github.com/accepte

/MLM-EUs
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Table 5
Step 1: Patient categorization. Baseline models were trained using standard features.

Baseline models Combined features Word2vec features

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Decision tree 0.84 0.82 0.85 0.83 0.74 0.64
Random forest 0.80 0.75 0.74 0.63 0.74 0.63
Logistic regression 0.63 0.68 0.65 0.69 0.29 0.34
MLP 0.83 0.81 0.79 0.77 0.74 0.63
Table 6
Step 2. Determine patient destination. Baseline models were trained using standard features.

Baseline models Combined features Word2vec features

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Decision tree 0.38 0.36 0.38 0.37 0.36 0.25
Random forest 0.39 0.28 0.37 0.26 0.37 0.26
Logistic regression 0.27 0.34 0.28 0.32 0.20 0.24
MLP 0.38 0.29 0.40 0.31 0.35 0.18
4. Results and analysis

In this section, we present the results obtained from the different
classifications and prediction models. Specifically, in Sections 4.1–4.3
we provide the results obtained by employing the automatic learn-
ing models studied at each stage of patient care. In 4.4, we identify
which variables of the data set contribute significantly to the results
obtained and the specific impact of the text vectorized using Word2vec.
Moreover, we explain some latent meanings for essential Word2vec
features.

4.1. Severity classification

As can be seen in Table 5, there is an increase in the performance
of the implemented algorithms when adding to the training and test-
ing dataset a set of text processed by vectorization. Even using only
processed text data, it is possible to obtain acceptable results. The best
results in terms of accuracy are obtained by applying the decision tree
model, with an accuracy of 0.84 with the available numeric data and
increasing to 0.85 by including vectorized text data. The F1 score value
also increased from 0.82 to 0.83 by including text data in the training
of the models. For the combined data column, 300 extra variables
are added to the original dataset, corresponding to the components of
the average vector obtained from the ‘‘Event description’’. With this
enhanced dataset, the models were re-trained. We observed increased
accuracy and F-1 scores for the Decision Tree and Logistic Regression.

4.2. Patient destination prediction

As seen in Table 6, the results are less accurate than those obtained
in the previous stage due to the poor quality and the little usable
information available in the records corresponding to this stage. The
results obtained for Logistic Regression and MLP show a minimal but
reasonable improvement when vectorized text records are included in
the prediction, even considering that they correspond to text referring
to the previous attention stage. In addition, to accelerate the time spent
executing the models, PCA was performed on the vectors transformed
from the text, reducing their dimensionality from 300 components
to only 32. Thus, it reduced the computational need of the exper-
iment, reduced the waiting times for results, and slightly increased
the performance indicators of the models, as shown in Table 6. The
best results were obtained at this stage by applying the MLP model,
getting a precision of 0.38. By using vectorized text and reducing
its dimensionality by PCA (see Table 7), the accuracy of the results
increased to 0.40. It is worth mentioning that the vectorized text with
dimensionality reduction significantly improved the F1 score value of
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the MLP.
Table 7
Step 2. Comparison of patient destination prediction, without text and with PCA text.
Baseline models were trained using standard features.

Baseline models PCA-Word2vec features

Accuracy F1-Score Accuracy F1-Score

Decision tree 0.38 0.36 0.39 0.36
Random forest 0.39 0.28 0.38 0.27
Logistic regression 0.27 0.30 0.29 0.32
MLP 0.38 0.29 0.40 0.35

4.3. LoS prediction

The third proposed prediction stage corresponds to the length of
hospitalization of patients. In this stage, confirmation of the diagnosis
was added to the hospitalization time, which is the variable to predict.
Table 8 presents the results of the prediction of LoS in the hospital for
each trained ML model.

At this stage, we also reduced the dimensionality of the aver-
age vector obtained by transforming the event description field using
Word2vec, reducing the execution time but not significantly impacting
the results. Table 9 presents the results of predicting the LoS in the hos-
pital by applying a dimensionality reduction of the combined dataset
using PCA.

There was still a tendency to obtain less accurate results due to the
lost information in the attention process. Although new information
was generated at each stage of the process, this information was textual,
unstructured, and challenging to process. For this reason, we have left
this information out of the analysis. There was also a tendency to
improve the results by including free text from the anamnesis generated
in the triage process. The best results were obtained using the decision
tree model with a coefficient of determination of 0.16, which improved
with the inclusion of vectorized text, reaching a coefficient of 0.23.

In conclusion, based on our results for the three stages of the patient
care process studied in this article, unstructured text processed with
NLP techniques improved the results of the predictions for the best
model found. The following section explores the individual contribution
of the components of the vectors resulting from the application of NLP
techniques in the results.

4.4. Relevance of features

In this section, we discuss the relevance of each feature on the
predictions using interpretability techniques. First, in Section 4.4.1,
results from the Permutation Importance method are provided. Then, in
Section 4.4.2 feature relevance is estimated using the SHAP technique
shown. These techniques are applied to the MLP model for the three

stages considered in our paper.
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Table 8
Step 3. Comparison of the time prediction for patient hospitalization. Baseline models were trained using
standard features.

Baseline models Combined features

𝑅2 Max MAD MSE 𝑅2 Max MAD MSE

Decision tree 0.16 191 8.73 298.43 0.23 190 7.19 249.88
Random forest 0.14 193 9.17 304.74 0.18 194 7.82 264.29
Lasso 0.12 196 9.53 311.56 0.20 196 8.57 256.94
MLP 0.12 198 9.04 310.26 0.02 201 10.12 315.70
Table 9
Step 3: Comparison of predicted patient hospitalization time, without text and with PCA text. Baseline
models were trained using standard features.

Baseline models PCA-Word2vec features

𝑅2 Max MAD MSE 𝑅2 Max MAD MSE

Decision tree 0.16 191 8.73 298.44 0.23 190 7.18 249.52
Random forest 0.14 192 9.17 304.74 0.18 194 7.81 264.28
Lasso 0.12 196 9.53 311.55 0.19 195 8.72 261.85
MLP 0.12 198 9.04 310.26 0.00 206 8.71 322.14
Table 10
Results of the application of the Permutation Importance to the MLP model at each stage of the care process. Baseline models
were trained using standard features.
Patient classification Destination prediction Days of hospitalization

Weight Feature Weight Feature Weight Feature

0.0562 ± 0.0051 EVA 0.0309 ± 0.0020 CAT_C3 0.1354 ± 0.0231 DM_N
0.0331 ± 0.0045 SATO2 0.0256 ± 0.0071 Desc_31 0.1322 ± 0.0267 DM_S
0.0133 ± 0.0016 DM_S 0.0243 ± 0.0042 Desc_169 0.0928 ± 0.0049 PAC_EDAD
0.0122 ± 0.0021 GLASGOW 0.0236 ± 0.0045 CAT_C2 0.0482 ± 0.0052 Desc_206
0.0116 ± 0.0030 FR 0.0224 ± 0.0068 Desc_80 0.0433 ± 0.0027 Desc_114
0.0067 ± 0.0029 Desc_237 0.0202 ± 0.0048 Desc_95 0.0290 ± 0.0116 EVA
0.0056 ± 0.0027 PAC_EDAD 0.0201 ± 0.0031 DM_S 0.0246 ± 0.0088 Desc_89
0.0049 ± 0.0027 Desc_187 0.0201 ± 0.0037 Desc_292 0.0240 ± 0.0061 Desc_221
0.0048 ± 0.0028 Desc_130 0.0201 ± 0.0048 Desc_258 0.0232 ± 0.0089 Desc_42
0.0044 ± 0.0036 Desc_77 0.0196 ± 0.0070 Desc_106 0.0224 ± 0.0061 Desc_158
4.4.1. Use of permutation importance for feature analysis
This method of feature importance analysis evaluates the impact

of removing any of the variables from the data set on the model’s
performance indicators. Features presented in Table 10 were described
in Table 1. Features denoted with the prefix ‘‘DESC’’ correspond to com-
ponents of the 300-dimensional vectors obtained by applying Word2vec
to the event description variable.

As we can see in Table 10, the EVA variable and SATO2 of the
vectorized text are the principal responsible for the results obtained
using the MLP model.

It should be noted that the EVA (airway assessment) variable is
important in obtaining results in the three stages of the care model
studied. Another feature frequently appears is the saturation oxygena-
tion level (SATO2). Altered oxygenation levels are directly related to
the patient’s category and condition during the care process. Another
aspect to consider is the great importance of diabetes mellitus (DM)
in predicting the LoS of patients in hospitalization. There is likely a
direct relationship between this disease’s existence and the patient’s
hospitalization. At least one text-embedding feature is observed within
the top-five most important features in the three stages.

4.4.2. Use of SHAP values for feature analysis
When applying SHAP values to analyze the contribution of text in

the prediction of severity categories using MLP, we identified that the
variable EVA reappears as one of the most relevant variables in the
classification of patient severity, together with some components of
vectorized words.

In Fig. 5, we can see that the EVA and SATO2 features appear again
as the most important in classifying patients according to severity level,
obtaining a more significant contribution according to the average
impact on model output magnitude. We can also see that such variables
significantly influence the three most represented categories of patients
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Fig. 5. SHAP values applied to MLP modeling in step 1. Color bar represents the class
and length represents the impact magnitude. Class 1 = category C3, Class 2 = category
C2, and Class 3 = category C4.

(Class 1, Class 2, and Class 3). Furthermore, we highlight features FR,
PAC_EDAD, GLASGOW, Desc_130, Desc_77, Desc_237, and Desc_171 as
good predictors for severity classification.

In Fig. 6 explaining stage 2 shows that the descriptors have a
significant impact on the outcome. Each column presents through the
colors the magnitude in which the result is described from the variable.

In Fig. 7, we can see a different visualization to those described in
the previous stages. This is because, unlike in stages 1 and 2, in stage 3,
we try to predict the patient’s LoS through regression models. In other
words, the data presented in the figure represents how the features



Expert Systems With Applications 223 (2023) 119864J. Moya-Carvajal et al.

-

Fig. 6. SHAP values applied to MLP modeling in stage 2. Color bar represents the
class and length represents the impact magnitude.

Fig. 7. SHAP values applied to MLP model in stage 3.

influenced the LoS calculation and not necessarily the classification
of patients. In this figure, six out of 10 features are text descriptors
and identified as being relevant for determining the models’ outcome.
Moreover, we can see that the features DM, EVA, and patient age
have a significant impact on the results of the MLP model. Specifically,
DM-S, which denotes the presence of diabetes mellitus in the patient,
generates a high impact on the outcome, unlike DM-N, which indicates
the absence of the disease in the patient.

4.5. Meaning discovery of relevant dimensions

In previous sections, we noted that some components of sentence
embeddings appeared as essential features in obtaining results from
ML models. Because of that, we propose understanding the implicit
meaning of these vectors through modifications 𝛿 in the value along the
specific relevant dimension. Firstly, we get the embedding of the word
paciente (patient), then we apply the before commented shift, obtaining
the words presented in Table 11.

When looking at Table 11, we observe that when 𝛿 is small, the near
words are closely related to concepts of preoperation and postopera-
tion. Then, as the component’s value increased, new words gradually
appeared with similar contexts. This experiment provides an alterna-
tive for discovering and understanding the meaningful of explanations
provided by SHAP.
13
Table 11
Modification of the value of component No. 277 for the vector representation of the
word ‘‘patient’’. The original Spanish word and the English translation are presented
original/translation.
𝛿 Most near words

−6 diagnosticador/diagnostician postoperatorias/postoperative
−4 diagnosticador/diagnostician postoperatorio/postoperative
−2 pacientes/patients postoperatorio/postoperative
origin pacientes/patients preoperatorio/preoperative
2 pacientes/patients preoperatorio/preoperative
4 preoperatorio/preoperative pacientes/patients
6 clonazepane/clonazepano clonazepan/clonazepan

5. Conclusions

We propose using sentence embeddings to improve prediction per-
formances using information from EUs. Moreover, our approach con-
siders explanations using SHAP values and suggests a procedure to
discover meaning from relevant dimensions of sentence embeddings.
From a practical point of view, this method offers an alternative to
easily incorporate text in predictive models in UEs, improving the
quality of predictions and, consequently, preparing better planning of
resources. Our methodology can be considered model-agnostic since
both the embedding generator and the classifier can be replaced.

After the experiments performed and the result obtained, we can
conclude that the contribution of including free text as training data
for prediction and classification models, when available, is an extra
effort considering classical ML methodologies. However, when datasets
present missing or minor information, each valid data becomes crucial
for obtaining good quality predictions and classifications. In our experi-
ments, the vectorized text was shown to contribute enough information
for prediction, improving the results to determine the severity category
of patients at an acceptable level.

Another relevant aspect is the importance of interpretability in ML.
Although the models implemented in this research are not the most
complex in this field of study, it is difficult to understand some of
them (e.g., MLP) and why the training data allowed us to obtain
results such as those described. That is why explainability techniques
provide transparency to the results, give researchers and practitioners
more confidence in their results, and allow physicians or end-users to
understand the behavior of relevant data in treating a patient.

Future research could consider an in-depth study of the meaning of
relevant dimensions from this type of sentence embedding. Moreover,
this methodology could be applied using the most recent and ad-hoc
approaches to represent text from EUs. Finally, we also encourage the
application of this method using other sources of textual information,
e.g., anamnesis of patients.
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