Artículos de Revistas
URI permanente para esta colección
Examinar
Examinando Artículos de Revistas por Materia "Body composition"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Association between adipose tissue characteristics and metabolic flexibility in humans: A systematic review(Frontiers Media S.A., 2021-12-03) Glaves, Alice; Díaz-Castro, Francisco; Farías, Javiera; Ramírez-Romero, Rodrigo; Galgan, Jose E.; Fernández-Verdejo, RodrigoAdipose tissue total amount, distribution, and phenotype influence metabolic health. This may be partially mediated by the metabolic effects that these adipose tissue characteristics exert on the nearby and distant tissues. Thus, adipose tissue may influence the capacity of cells, tissues, and the organism to adapt fuel oxidation to fuel availability, i.e., their metabolic flexibility (MetF). Our aim was to systematically review the evidence for an association between adipose tissue characteristics and MetF in response to metabolic challenges in human adults. We searched in PubMed (last search on September 4, 2021) for reports that measured adipose tissue characteristics (total amount, distribution, and phenotype) and MetF in response to metabolic challenges (as a change in respiratory quotient) in humans aged 18 to <65 years. Any study design was considered, and the risk of bias was assessed with a checklist for randomized and non-randomized studies. From 880 records identified, 22 remained for the analysis, 10 of them measured MetF in response to glucose plus insulin stimulation, nine in response to dietary challenges, and four in response to other challenges. Our main findings were that: (a) MetF to glucose plus insulin stimulation seems inversely associated with adipose tissue total amount, waist circumference, and visceral adipose tissue; and (b) MetF to dietary challenges does not seem associated with adipose tissue total amount or distribution. In conclusion, evidence suggests that adipose tissue may directly or indirectly influence MetF to glucose plus insulin stimulation, an effect probably explained by skeletal muscle insulin sensitivityÍtem Creatine supplementation prior to strength exercise training is not superior in preventing muscle mass loss compared with standard nutritional recommendations in females after bariatric surgery: a pilot study(Springer Nature, 2024) Díaz Pizarro, Marcelo; Pino Zúñiga, Johanna; Olivares Gálvez , Mariela; Rendón Vesga , Carolina; Luengas Tello, Rafael; Duque Seguro, Juan Camilo; Cancino, JorgeBackground: This study examines whether creatine supplementation combined with strength training mitigates muscle mass loss in women during early rehabilitation post-bariatric surgery, as its effectiveness remains untested in this context. Methods: Fifteen women (37.8 ± 9.6 years; BMI, 38.8 ± 5.6 kg/m2) completed the intervention (creatine group = 7; placebo group = 8). Both groups followed a strength training program three times a week for 8 weeks. The dosage for both the creatine and placebo was 8 g prior to each exercise session. Body weight, skeletal muscle mass, fat mass, handgrip strength, and physical activity levels were measured before and after the intervention. Results: The creatine group showed a reduction of 9.5 ± 1.5 kg in body weight, with a 0.72 ± 0.6 kg decrease in muscle mass and an 8.64 ± 1.2 kg reduction in fat mass. The placebo group had a reduction of 9.6 ± 3.5 kg in body weight, with a 0.6 ± 1.2 kg decrease in muscle mass and an 8.88 ± 3.2 kg reduction in fat mass, without significant differences between groups (p > 0.05). Conclusion: The pre-session strength exercise training creatine supplementation is not superior to placebo regarding body weight and fat mass losses and the attenuation of muscle mass loss during the first weeks of rehabilitation following bariatric surgery.Ítem Energy expenditure in humans: principles, methods, and changes throughout the life course(Annual Reviews Inc., 2024-05-17) Fernández-Verdejo, RodrigoHumans require energy to sustain their daily activities throughout their lives. This narrative review aims to (a) summarize principles and methods for studying human energy expenditure, (b) discuss the main determinants of energy expenditure, and (c) discuss the changes in energy expenditure throughout the human life course. Total daily energy expenditure is mainly composed of resting energy expenditure, physical activity energy expenditure, and the thermic effect of food. Total daily energy expenditure and its components are estimated using variations of the indirect calorimetry method. The relative contributions of organs and tissues determine the energy expenditure under different physiological conditions. Evidence shows that energy expenditure varies along the human life course, at least in part due to changes in body composition, the mass and specific metabolic rate of organs and tissues, and levels of physical activity. This information is crucial to estimate human energy requirements for maintaining health throughout the life course.