Examinando por Autor "Human-Castilla, Nils Leander"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Chemical properties of vitis vinifera carménère pomace extracts obtained by hot pressurized liquid extraction, and their inhibitory effect on type 2 diabetes mellitus related enzymes(MDPI, 2021-03-21) Human-Castilla, Nils Leander; Campos, David; García-Ríos, Diego; Parada, Javier; Martínez-Cifuentes, Maximiliano; Mariotti-Celis, María Salomé; Pérez-Correa, RicardoGrape pomace polyphenols inhibit Type 2 Diabetes Mellitus (T2DM)-related enzymes, reinforcing their sustainable recovery to be used as an alternative to the synthetic drug acarbose. Protic co-solvents (ethanol 15% and glycerol 15%) were evaluated in the hot pressurized liquid extraction (HPLE) of Carménère pomace at 90, 120, and 150 °C in order to obtain extracts rich in monomers and oligomers of procyanidins with high antioxidant capacities and inhibitory effects on α-amylase and α-glucosidase. The higher the HPLE temperature (from 90 °C to 150 °C) the higher the total polyphenol content (~79%, ~83%, and ~143% for water-ethanol, water-glycerol and pure water, respectively) and antioxidant capacity of the extracts (Oxygen Radical Absorbance Capacity, ORAC), increased by ~26%, 27% and 13%, while the half maximal inhibitory concentration (IC50) decreased by ~65%, 67%, and 59% for water-ethanol, water-glycerol, and pure water extracts, respectively). Water-glycerol HPLE at 150 and 120 °C recovered the highest amounts of monomers (99, 421, and 112 µg/g dw of phenolic acids, flavanols, and flavonols, respectively) and dimers of procyanidins (65 and 87 µg/g dw of B1 and B2, respectively). At 90 °C, the water-ethanol mixture extracted the highest amounts of procyanidin trimers (13 and 49 µg/g dw of C1 and B2, respectively) and procyanidin tetramers of B2 di-O-gallate (13 µg/g dw). Among the Carménère pomace extracts analyzed in this study, 1000 µg/mL of the water-ethanol extract obtained, at 90 °C, reduced differentially the α-amylase (56%) and α-glucosidase (98%) activities. At the same concentration, acarbose inhibited 56% of α-amylase and 73% of α-glucosidase activities; thus, our grape HPLE extracts can be considered a good inhibitor compared to the synthetic drug.Ítem Hot pressurized liquid extraction of polyphenols from the skin and seeds of vitis vinifera L. cv. Negra Criolla Pomace a Peruvian native pisco industry waste(MDPI, 2021-04-28) Allca-Alca, Erik; León-Calvo, Nilton; Luque-Vilca, Olivia; Martínez-Cifuentes, Maximiliano; Pérez-Correa, José Ricardo; Mariotti-Celis, María Salomé; Human-Castilla, Nils LeanderThe pisco industry in Peru generates large amounts of grape pomace, which is a natural source of bioactive compounds with potential nutraceutical applications. Hot pressurized liquid extraction (HPLE) with water-ethanol solvent mixtures (20–60%) at high temperatures (100–160 °C) was applied to recover polyphenols from the skin and seeds of a Peruvian pisco-industry grape-pomace waste. At the same HPLE conditions (60% ethanol, 160 °C), the seed fraction extracts contained ~6 times more total polyphenol and presented ~5 times more antioxidant activity than the extract from the skin fraction. The lowest ethanol concentration (20%) and the highest temperature (160 °C) achieved the highest recovery of flavanols with 163.61 µg/g dw from seeds and 10.37 µg/g dw from skins. The recovery of phenolic acids was maximized at the highest ethanol concentration and temperature with 45.34 µg/g dw from seeds and 6.93 µg/g dw from skins. Flavonols were only recovered from the skin, maximized (17.53 µg/g dw) at 20% of ethanol and the highest temperature. The recovery of specific polyphenols is maximized at specific extraction conditions. These conditions are the same for seed and skin extractions. This alternative method can be used in other agroindustrial wastes in order to recover bioactive compounds with potential applications in the pharmaceutical and food industry.