Ingeniería Civil Informática
URI permanente para esta comunidad
Examinar
Examinando Ingeniería Civil Informática por Autor "Cordova, Felisa M."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Energy homeostasis management strategy for building rooftop nanogrids, considering the thermal model and a HVAC unit installed(Elsevier, 2022-02-04) Yanine, Fernando; Sanchez-Squella, Antonio; Barrueto, Aldo; Sahoo, Sarat Kumar; Parejo, Antonio; Cordova, Felisa M.This paper presents a case study on power control and energy management for a 60 apartments’ residential building with solar generation and energy storage tied to the grid in Santiago, Chile. A new energy management algorithm based on energy homeostasis is designed for a small electro thermal generation system (nanogrid), with smart metering. The test bed employs supervisory control with energy management that regulates the temperature inside a large room by the action of an HVAC (Heating/Ventilating/Air Conditioning) unit. The main objective of supervisory control is to allow temperature comfort for residents while evaluating the decrease in energy cost. The study considers a room with rooftop grid-tie nanogrid with a photovoltaic and wind turbine generation plant, working in parallel. It also has an external weather station that allows predictive analysis and control of the temperature inside the abode. The electrical system can be disconnected from the local network, working independently (islanding) and with voltage regulation executed by the photovoltaic generation system. Additionally, the system has a battery bank that allows the energy management by means of the supervisory control system. Under this scenario, a set of coordination and supervisory control strategies, adapted for the needs defined in the energy management program and considering the infrastructure conditions of the network and the abode, are applied with the aim of efficiently managing the supply and consumption of energy, considering Electricity Distribution Net Billing Laws 20.571 and 21.118 in Chile (https://www.bcn.cl/historiadelaley/historia-de-la-ley/vista-expandida/7596/), the electricity tariffs established by the distribution company and the option of incorporating an energy storage system and temperature control inside the room. The results show the advantage of the proposed tariffs and the overall energy homeostasis management strategy for the integration of distributed power generation and distribution within the smart grid transformation agenda in Chile. Este artículo presenta un caso de estudio sobre control de potencia y gestión de energía para un edificio residencial de 60 departamentos con generación solar y almacenamiento de energía conectado a la red en Santiago, Chile. Se diseña un nuevo algoritmo de gestión energética basado en la homeostasis energética para un pequeño sistema de generación electrotérmica (nanogrid), con medición inteligente. El banco de pruebas emplea un control de supervisión con administración de energía que regula la temperatura dentro de una habitación grande mediante la acción de una unidad HVAC (Calefacción/Ventilación/Aire acondicionado). El objetivo principal del control de supervisión es permitir el confort de la temperatura para los residentes mientras se evalúa la disminución del costo de la energía. El estudio considera una habitación con nanorredes conectadas a la red en la azotea con una planta de generación fotovoltaica y eólica, trabajando en paralelo. También cuenta con una estación meteorológica externa que permite el análisis predictivo y control de la temperatura al interior de la morada. El sistema eléctrico se puede desconectar de la red local, trabajando de forma independiente (islanding) y con regulación de tensión ejecutada por el sistema de generación fotovoltaica. Adicionalmente, el sistema cuenta con un banco de baterías que permite la gestión de la energía a través del sistema de control de supervisión. Bajo este escenario, se aplican un conjunto de estrategias de coordinación y control supervisor, adaptadas a las necesidades definidas en el programa de gestión energética y considerando las condiciones de infraestructura de la red y del domicilio, con el objetivo de gestionar eficientemente el suministro y consumo de energía, considerando las Leyes de Facturación Neta de Distribución Eléctrica 20.571 y 21.118 de Chile (https://www.bcn.cl/historiadelaley/historia-de-la-ley/vista-expandida/7596/), las tarifas eléctricas establecidas por la empresa distribuidora y la posibilidad de incorporar un sistema de almacenamiento de energía y control de temperatura en el interior de la estancia. Los resultados muestran la ventaja de las tarifas propuestas y la estrategia general de gestión de la homeostasis energética para la integración de la generación y distribución de energía distribuida dentro de la agenda de transformación de redes inteligentes en Chile.Ítem Engineering sustainable energy systems: how reactive and predictive homeostatic control can prepare electric power systems for environmental challenges(Elsevier, 2017) Yanine, Fernando; Sanchez-Squella, Antonio; Barrueto, Aldo; Cordova, Felisa M.; Kumar Sahoo, SaratNowadays electric power generation and distribution systems are being faced with a number of challenges and concerns which emanate not so much from a shortage of energy supply but from environmental and operational issues. They are required to respond to such challenges very rapidly and effectively so as to preserve stability and continuity of operations at any time, regardless of what may occur in the surroundings. This in fact is the true measure of what sustainable energy systems (SES) are all about, and homeostatic control (HC) of energy systems seeks just that: to enable energy systems to become highly efficient and effective very rapidly, by attaining a state of equilibrium between energy supply and energy expenditure in electric power systems (EPS) operation. To accomplish so they ought to imitate homeostasis mechanisms present in all living organisms. Ever since Cannon (1929, 1935) first introduced the concept, attention on homeostasis and its applications have been the sole patrimony of medicine and biology to find cures for diseases like diabetes and obesity. Nevertheless, homeostasis is rather an engineering concept in its very essence - even more so than in the natural sciences - and its application in the design and engineering of sustainable hybrid energy systems (SHES) is a reality. In this paper we present the groundwork that supports the theoretical model underlining the engineering of homeostasis in SHES. Homeostasis mechanisms are present in all living organisms, and thus are also applicable to EPS in order to enable and maintain a sustainable performance when EPS are linked to energy efficiency (EE) and thriftiness. In doing so, both reactive and predictive homeostasis play a substantive role in the engineering of such mechanisms. Reactive homeostasis (RH) is an immediate response of the SES to a homeostatic challenge such as energy deprivation, energy shortage or imbalance. RH entails feedback mechanisms that allow for reactive compensation, reestablishing homeostasis or efficient equilibrium in the system. Predictive homeostasis (PH), on the other hand, is a proactive mechanism which anticipates the events that are likely to occur, sending the right signals to the central controller, enabling SES to respond early and proactively to environmental challenges and concerns. The paper explores both concepts based on previous work in order to advance the research in the field of HC applied to electric power systems.Ítem A fresh look at an old problem: saturation in the retail market and how it affects both retailers and consumers(Indian Society for Education and Environment, 2019-05-28) Yanine, Fernando; Cordova, Felisa M.; Valenzuela, Lionel; Isla, PabloObjective: Traditional saturation analysis on competitive location decision science focuses on diminishing returns for incumbents and newcomers in a specific spatial location pertaining to commercial retail potential past a certain point of market saturation. Methods/Findings: This study looks at this problem but employs a different approach to the subject altogether, wherein saturation is no longer a variable affecting only retailers but one that affects both: the marginal utility of consumers and the revenue of retailers albeit differently. A new mathematical model is proposed based on selected papers, contributing new insight into an already widely discussed subject. Application: Analysis shows that it is important for competitive location decision-making to address saturation from both sides of the overall competitive location decision issue, not just from the retailers’ standpoint.Ítem Smart Energy Systems: The Need to Incorporate Homeostatically Controlled Microgrids to the Electric Power Distribution Industry: An Electric Utilities’ Perspective(Science Publishing Corporation Inc., 2018) Yanine, Fernando; Cordova, Felisa M.; Barrueto, Aldo; Sahoo, Sarat Kumar; Sanchez-Squella, AntonioFor no one is a secret that nowadays electric power distribution systems (EPDS) are being faced with a number of challenges and concerns, which emanate not so much from a shortage of energy supply but from environmental, infrastructural and operational issues. They are required to preserve stability and continuity of operations at any time no matter what, regardless of what may occur in the surroundings. This is the true measure of what sustainable energy systems (SES) are all about and homeostaticity of energy systems seeks just that: to bring about a rapid, effective and efficient state of equilibrium between energy supply and energy expenditure in electric power systems (EPS). The paper presents the theoretical groundwork and a brief description of the model for the operation of SES and their role in energy sustainability, supported by theoretical and empirical results. The concept of homeostaticity in EPDS is explained, along with its role in SES.