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Abstract

We explore the use of implied volatility indices as a tool for estimate changes in the synchro-

nization of stock markets. Specifically, we assess the implied stock market’s volatility indi-

ces’ predictive power on synchronizing global equity indices returns. We built the correlation

network of 26 stock indices and implemented in-sample and out-of-sample tests to evaluate

the predictive power of VIX, VSTOXX, and VXJ implied volatility indices. To measure mar-

kets’ synchronization, we use the Minimum Spanning Tree length and the length of the Pla-

nar Maximally Filtered Graph. Our results indicate a high predictive power of all the volatility

indices, both individually and together, though the VIX predominates over the evaluated

options. We find that an increase in the markets’ volatility expectations, captured by the

implied volatility indices, is a good Granger predictor of an increase in the synchronization of

returns in the following month. Estimating, monitoring, and predicting returns’ synchroniza-

tion is essential for investment decision-making, especially for diversification strategies and

regulating financial systems.

1. Introduction

In recent years, interest in implementing strategies of international diversification, motivate

investors to search for assets, markets, and regions that protect them against economic and

financial shocks. But cross-market and cross-asset linkages, the interconnectedness of financial

markets, stock returns co-movement [1,2], and specifically, episodes of higher synchronization

of returns are key elements that jeopardize the effectiveness of such strategies. This behavior is

part of the financial system, as we witnessed during the subprime crisis when markets react

with heightened returns synchronization. This phenomenon demonstrates the necessity to

look at the financial market as a complex system.

Financial markets are a typical example of a complex system. Characterized by numerous

entities and interaction rules that lead to collective behaviors that generally depend on the

interactions between the entities belonging to the system. A complex financial system has mul-

tiple assets and markets, where investors value financial assets according to their expectations,

market conditions and consequently, make investment decisions generating synchronization
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between the prices and returns of assets and markets [3]. This behavior is a recurrent phenom-

enon due to the growing economic and financial interconnectedness of countries and markets.

Evidence shows that greater global economic and political openness fosters integration and

interconnection at the capital markets level, transforming them into larger and more complex

financial systems. As financial shocks show, a highly interconnected financial system is prone

to suffer rare events such as the Subprime crisis and the Covid-19 pandemic, where local

shocks were amplified, spread, and quickly turned into a global turmoil.

Useful network methods for study markets´ behavior are the Minimum Spanning Tree

(MST) and the Planar Maximally Filtered Graph (PMFG). With these techniques, it is possible

to build a connected network of financial assets to identify topological features related to the

emergence of returns synchronization in stock markets [4]. For example, evidence indicates

that during synchronization of returns or collective behavior–where financial assets exhibit a

similar tendency, the asset´s network displays a change in their topology related to the “small–

world” property of Watts and Strogatz [5]. Under such events, this phenomenon facilitates a

more efficient coupling among the network’s components and increases return synchroniza-

tion [6].

Additionally, several studies demonstrate the usefulness of these measures for making

investment decisions. Guo et. al., [7] use the MST to categorize the Chinese stock market in

central and peripheral stocks, finding that the network’s peripheral ones, being less synchro-

nized with the rest of the market stocks, offer a similar return but with lower levels of risk,

making them more attractive to increase portfolio diversification. From a systemic perspective,

Magner et al. [4] use the length of the MST (MSTL) and the correlation network, to represent

the temporal dynamics of the synchronization phenomenon of regional stock markets of

America, Europa, Asia, and Oceania, and study how this dynamic has predictive power on the

realized volatility of the stock indices of the main exchanges of the world. Their results provide

practical implications for the investment management industry and for the regulator´s

viewpoint.

Currently, an important gap in the literature relates to the understanding of the factors of

the synchronization of returns in financial markets. This phenomenon is important because as

the evidence indicates, an increase in synchronization leads to a rise in the systemic risk of the

markets and a decrease in the effectiveness of diversification as a risk management tool [8]. As

the literature points out, both variables are fundamental elements to monitor the stability of

financial markets and adequately manage the risk of investment portfolios.

A conjecture of the stock market synchronization links to the execution of investment strat-

egies. When facing an unexpected change in the expected volatility due to variations in uncer-

tainty, investors will execute similar asset reallocation decisions. For instance, investors

implementing the typical "flight to quality" strategy, whereby they sell (buy) stocks and buy

(sell) bonds, generating a greater synchronization of asset returns in the short term. Similarly,

a shock caused by a war or a pandemic such as Covid-19 will increase future uncertainty caus-

ing investors to rebalance their portfolios towards safe-haven assets. Consequently, this collec-

tive behavior causes similar decisions in the agents that enhance the synchronization of

financial assets in the entire market.

Ample evidence relates volatility, as a simple measure of risk and uncertainty, as one of the

main measurements used to describe and quantify financial asset return fluctuations. For

example [9–12], show a negative, contemporaneous, and asymmetric relationship between

changes in volatility indices and stock indices’ returns. However, despite this robust body of

empirical evidence of the literature, we still know little about the influence of volatility on the

synchronization of returns. Nowadays, this issue is still a critical phenomenon for managing

investment portfolios and monitoring financial stability and systemic risk [13–15].

PLOS ONE Correlation network of stock indices and forecasting tests for volatility indices

PLOS ONE | https://doi.org/10.1371/journal.pone.0250846 May 20, 2021 2 / 21

https://doi.org/10.1371/journal.pone.0250846


Shocks can generate volatility spillovers. A phenomenon related to systemic risk, which can

arise through interlinkages between the financial system components so that individual failure

or malfunction has repercussions around the financial system. However, little research links

international volatility spillovers to global financial systemic risk. In this sense, given the

increasing size and sophistication of derivatives markets, volatility spillovers can now be stud-

ied with stock implied volatility as an ex-ante risk-neutral expectation of future volatility and

directly available daily or even intraday frequency. Relatively few studies have explored implied

volatility spillovers across countries and asset classes. This paper is one of these studies.

The purpose of this paper is to evaluate the predictive power of the stock market’s implied

volatility indices on the synchronization of stock market returns. For this, we represent the

volatility expectations of the markets using the implicit volatility indices’ behavior and we esti-

mate markets’ returns synchronization applying asset trees methodologies. Specifically, to cap-

ture the changes in uncertainty levels in the financial markets, we use the VIX and two

alternative indices, the European VSTOXX and the Asian VXJ. These indices have historically

been the object of research due to their demonstrated capacity to represent the fear of financial

markets and for its effects on financial market’s investment decisions, coverage, and regulatory

aspects.

We use the length of the Minimum Spanning Tree (MSTL) and the length of the Planar

Maximally Filtered Graph (PMFGL) for measuring the synchronization of asset returns

[16,17]. As the literature states an increase (decrease) in these parameters indicates a lower

(higher) correlation within the asset network, and consequently, a lower (higher) synchroniza-

tion of returns. To cover the most considerable portion of the leading world stock markets, we

include 26 stock indices of markets made up of North America, Latin America, Europe, Asia,

and Oceania. Then, to assess the relationship between the stock market’s volatility expectations

and the synchronization of returns, we run tests to estimate Granger causality. In this sense,

we carry out tests within the sample using statistical series between 2001 and 2020 with

monthly frequency. Finally, to dig deeper into the predictive power of volatility indices, we

applied several out-of-sample tests with different sizes of estimation windows.

Applying these methodologies, this paper contributes to the literature on volatility spillover

effects in equity markets, attempting to determine the extent to which financial globalization

and increased regional integration affect interdependence among equity markets. There is

broad empirical literature investigating the effects of further financial integration on economic

growth and investment. Further integration increases local returns’ sensitivities to common

world (regional) shocks and higher cross-market equity synchronization. As a consequence,

the potential of country, regional and global diversification strategies may decrease. In an

attempt to place ourselves on the other side of the current literature, we use three implied vola-

tility stock indices to forecasting cross-market equity synchronization, adding a novel point of

view of the usefulness of implied volatility indices.

Our main results indicate a significant predictive power of all the implicit volatility indices

at the global and regional networks of stocks. Also, we find a high predictive power of the VIX,

finding a negative relationship between all the volatility indices and the stock markets synchro-

nization levels, represented by changes in the MSTL and the PMFGL. In other words, the evi-

dence shows that by increasing the expected volatility captured by rises in the variations of the

VIX, VSTOXX, and VXJ, a significant signal of future increment in the global and regional

synchronization of the equity markets is generated by decreasing the lengths of the MST and

PMFG. In addition to these results, we apply a Structural VAR that suggests the existence of

Granger-causality. This predictability seems to go from the VIX, VSTOXX, and VXJ to the

MSTL, providing strong evidence that the implicit volatility of the stock market generates

future stock market synchronization.
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Our evidence has important implications for investors, fund managers, and market regula-

tors. First, our work shows that an increase in the implicit market volatility is the forerunner of

a future increment in the synchronization of the returns of the stock markets, which would

imply a greater level in the systemic risk and a decrease in the benefits of portfolio diversifica-

tion as a risk minimization tool. In this sense, from an investor’s point of view, our research

helps them monitor one of the factors associated with the synchronization of equity market

returns. Second, portfolio managers can use these results to estimate return timing thresholds

that would allow them to anticipate high synchronization events and their consequent effects

on the effectiveness of portfolio diversification. Finally, from the viewpoint of regulators, our

paper highlights the role of implicit volatility indicators to explain future events of high finan-

cial synchronization. This issue present in high turmoil and high uncertainty episodes signifi-

cantly increases systemic risk levels in financial markets [18].

A word of caution. This research does not study the structural links between implied volatil-

ity and stock market synchronization. For this proposal, we need a structural model. We only

evaluate the predictive ability of three implied volatility indices via Granger-causality and fore-

casting regressions over the stock market synchronization, which are useful to assess whether a

variable has the predictive ability, not whether its “cause” other variables to change. In this

regard, our work is the first step for studying the possible links between the implied volatility

and uncertainty in financial markets and its predictive effects on asset networks.

The rest of the paper is organized as follows. In section 2, we explain in detail the forecast-

ing methodology and models. In section 3, we present and discuss the results. In section 4, we

conclude.

2. VIX and stock markets behavior

There is evidence of an interrelation between implied market volatility, contemporaneous and

future stock returns, and economic uncertainty. Known as the investor fear gauge, since high

levels of the Chicago Board Options Exchange Volatility Index (VIX) coincide with high

degrees of market turmoil. VIX measures market expectations of stock return volatility and

corresponds to a measure of the ex-ante risk-neutral expectation of future volatility of Ameri-

can stocks [9,19–21]. Calculated initially from S&P100 stock index options, from 2003, the

VIX is estimated from the S&P500 index option prices. Evidence indicates that VIX predicts

returns on stock market indices, suggesting that implied volatility is a risk factor for security

returns. Nowadays, it is the best gauge to forecast volatility of equities, and it is an indicator

highly used by investors as a measure of stock market uncertainty. For instance, Banerjee et. al.

[22] state that VIX has a robust predictive capacity for future stock returns evidencing a posi-

tive relationship between S&P500 future performance and VIX evolution.

As a tool to gauge market volatility, some traders use VIX as a stock market timing tool.

Based on the observation that high levels of VIX often coincide with market bottoms, VIX

seems to indicate "oversold" markets. Therefore, traders can take long positions in the market

in anticipation of an increase after VIX is high. Giot [23] tests if high levels of VIX indicate

oversold stock markets by dividing the VIX price history into equally spaced rolling percentiles

and examining the returns on the S&P100 for various future holding periods up to 60 days for

each of these percentiles. He finds that for very high (low) levels of VIX, future returns are

always positive (negative) and that negative (positive) contemporaneous returns are associated

with increased (decreased) implied volatility. These findings suggest that too high levels of

VIX may signal attractive buying opportunities.

In the same vein, Copeland and Copeland [24] find that changes in VIX are statistically sig-

nificant leading indicators of daily future market returns and a tool for improving a stock
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portfolio’s yield. They state that on days that follow increases in VIX, portfolios of large-capi-

talization stocks outperform portfolios of small-capitalization stocks and value-based portfo-

lios outperform growth-based portfolios. Similarly, on days following a decrease in VIX, the

opposite happens with the latter portfolios’ performance. The implication they state is that

market timing using VIX may be appropriate for portfolio yield strengthening.

Finally, VIX also has implications for economic uncertainty. Exploring the dynamic co-

movements between macroeconomic policy uncertainty, stock market returns, and stock mar-

ket implied volatility, Antonakakis et. al [25] find dynamic correlations between macroeco-

nomic policy uncertainty and stock market returns are mainly negative. Also, an increase in

the stock market implied volatility–measured by VIX- coupled with a higher macroeconomic

policy uncertainty diminish stock market returns while it increases economic policy

uncertainty.

VIX fluctuations not only impacts markets return and economic uncertainty in local terms,

but also has a leading role in the context of the international markets. Investigating the cross-

market relations of volatility indexes with US and non-US stock market returns, Shu et. al [26]

report a pervasive VIX influence at both US and non-US stock markets. They find that infor-

mation flow is unidirectional from VIX to the stock market, being the VIX change a critical

determinant of stock market returns. They also indicate that as VIX plays a role in the spill-

overs’ direction, investors can use it to predict stock market movement both in the US and the

international markets.

Finally, when comparing the VIX versus other volatility indexes such as VSTOXX and

VKOSPI, Shu et. al [26] show that VIX is the most significant contributor of spillovers towards

other volatility indexes, pointing VIX with a leading role in the international markets. Similar

results document Kang et. al [27] when analyzing the dynamic pattern of spillover and con-

nectedness between a broad set of financial assets, find that there are spillovers between VIX

and VSTOXX and that the latter volatility index acts as a net transmitter of shocks, especially

during periods of turmoil in European financial markets.

3. Materials and methods

3.1 Data

We utilize daily data provided by Bloomberg and Refinitiv from July 2001 to July 2020, totaling

223 months. As independent variables, we use three stock market implied volatility indices:

CBOE VIX index (VIX), EURO STOXX 50 Volatility (VSTOXX), and volatility Index Japan

(VXJ). With these indices, we carry out tests to predict the MSTL monthly variation for four

regional markets: North America, Latin America, Europe, Asia, and Oceania. To compute the

MSTL we take 26 stock market indexes (see Table 1 for details).

Table 2 exhibits our summary statistics for the three series of implied volatility at the

monthly frequency. The series is considered here both in levels (Panel A) and first log-differ-

ences (Panel B). Some features are worth mentioning. First, the maximum values for our mea-

sures of implied volatility coincide with the 2009 global financial crisis (notice the spike in Fig

1). Second, we study the existence of unit-roots in our series through a Phillips-Perron test; as

reported by a vast literature (e.g., Yang and Zhou [19]), the implied volatility series (Panel A)

does not seem to be stationary.

Moreover, Fig 2 shows that the autocorrelations are strong, and tend to decay linearly

rather than exponentially, a common feature of the unit-root series. In contrast, our series in

Table 2 Panel B strongly reject the null hypothesis of unit-roots in all cases. For this reason, we

consider the first log-differences (Table 2 Panel B) in all our econometric specifications. Third,

a note of caution: for completeness and illustrative purposes, we report sample moments for
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both Table 2 Panel A and Panel B series. However, we acknowledge that our series in Table 2

Panel A are not stationary neither ergodic. Hence the existence of population moments (or the

convergence of sample moments to population moments) may be highly debatable. In this

sense, for Table 2 Panel A, our Means, Std. Dev, Skewness, and Kurtosis may be somewhat

misleading. Finally, both Panels of series tend to be fat-tailed and, to some extent, skewed (at

least for Panel A); not surprisingly, according to the Jarque-Bera test, the null of Normality is

strongly rejected in every case (especially for Table 2 Panel A).

3.2 Networks analysis

A simple transformation of the matrix of linear correlation between return assets into an

equivalent distance produces a connected network studied in numerous works. In this net-

work, the nodes correspond to the assets, and the edges that join them represent the distances

obtained from those correlations. All the nodes are connected with them, so if the network has

N nodes, there will be N(N—1)/2 edges.

Table 1. Stock country indices to estimate MSTL’s region.

MSTL

Region

Indices

North

America

S&P500, NASDAQ from USA and TSX from Canada.

Latin

America

IPC from Mexico, BOVESPA from Brazil, IPSA from Chile, MERVAL from Argentina, IGBVL

from Peru.

Europe FTSE from UK, CAC from France, DAX from Germany, IBEX from Spain, MIB from Italy, AEX

from Holland, OMX from Sweden, RTS from Russia, and SMI from Swiss.

Asia NIKKEI from Japan, HANG-SENG from Hong Kong, KOSPI from Korea, TSE from Taiwan, JSE

from Indonesia, KLCI from Malaysia, and ST from Singapur.

Oceania ASX from Australia and NZSE from New Zealand.

This table indicates the stock indices considered to calculate the MSTL for each region. Global MSTL is calculated

with all stock indices. Source: Authors’ elaboration.

https://doi.org/10.1371/journal.pone.0250846.t001

Table 2. Summary statistics of monthly implied volatility indices.

Panel A Panel B

VIX VSTOXX VXJ DLOG(VIX) DLOG(VSTOXX) DLOG(VXJ)

Mean 19.461 23.509 24.443 0.002 0.002 0.000

Median 16.800 21.085 22.730 -0.016 -0.028 -0.020

Maximum 59.890 61.340 96.690 0.853 0.901 0.908

Minimum 9.510 11.986 12.030 -0.486 -0.516 -0.641

Std. Dev. 8.467 9.443 9.462 0.208 0.199 0.212

Skewness 1.913 1.482 3.013 0.633 0.602 0.765

Kurtosis 7.523 5.191 19.323 4.493 4.609 5.649

Jarque-Bera stat 330.506 127.987 2850.790 35.921 37.870 87.711

p-value 0.000 0.000 0.000 0.000 0.000 0.000

Phillips-Perron stat -0.888 -0.941 -1.433 -20.109��� -20.271��� -22.835���

p-value 0.33 0.308 0.142 0.000 0.000 0.000

Observations 226 226 226 225 225 225

This table reports the summary statistic of monthly implied volatility indices from July 2001 to July 2020. Panel A shows implied volatility indices’ levels; Panel B shows

implied volatility indices on the first difference. Source: Authors’ elaboration.

https://doi.org/10.1371/journal.pone.0250846.t002
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We consider that there are N assets priced Pi,t for the asset i at time t. The logarithmic

return of the asset i given by ri,t = lnPi,t−lnPi,t-1 is computed. In our case, the returns are daily.

The synchronization between the assets i and j is captured with the simple linear correlation

defined as

rij ¼
hrirji � hriihrji

½hr2
i i � hrii

2
�½hr2

j i � hrji
2
�

½Eq 1�

where h. . .i indicates the average over a period, which for our case, corresponds to a month.

The vector ri corresponds to the return vector of the asset i. The same for the asset j with the

vector rj. The resulting correlation matrix contains the correlations between each pair of assets,

which are transformed to a distance metric, such that dij = (2(1−ρij))1/2, represents the distance

between assets i and j. Thus, a correlation ρij = −1 indicates a maximum distance of dij = 2,

while ρij = 1 indicates a minimum distance of dij = 0 [2]. The asset distance matrix is part of

the input to find a minimum distance asset tree.

To filter the information contained in this completely connected network, it is possible to

find subsets of the network or find asset trees. Thus, it is not necessary to have all possible con-

nections between nodes. A Minimum Spanning Tree (MST) links all the nodes of the network

Fig 1. VIX levels and time evolution. Note: This figure depicts the time series evolution of the VIX between the years

2002–2019.

https://doi.org/10.1371/journal.pone.0250846.g001

Fig 2. VIX autocorrelation graph. Note: This figure depicts the autocorrelation graph for VIX levels with lags from 1

to 20.

https://doi.org/10.1371/journal.pone.0250846.g002
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without cycles so that the distance path made when passing through all the nodes is minimal.

The construction of this asset tree is very well documented (see, for example, [16] and [28]),

and we briefly describe it in the methodology.

In this case, the corresponding MST is a simplified version of the complete asset network

with (N-1) edges. The distance traveled to pass through each node we call the length of the

MST (MSTL). Obviously, for each month t, the MST will be different, because the correlations

between assets are dynamic, and therefore there will be variation in the length of the MST. The

MSTL is

L tð Þ ¼
1

N � 1

P
dt
ij2T

tdt
ij ½Eq 2�

where Tt represents the asset tree in month t. The sum of the distances is done on all the edges

of Tt. The length is divided by N-1, the number of edges of the tree to obtain a standardized

measure of the length. The MSTL is a representation of the level of synchronization of the

assets. The variation of the MSTL is named VMSTLt = ln(MSTLt)—ln(MSTLt-1), whether nega-

tive (positive), indicates a contraction (expansion) of the tree, i.e. an increase (decrease) in syn-

chronization of returns.

Another alternative for simplifying the entire network of assets is the Planar Maximally Fil-

tered Graph (PMFG) (see Tumminello et. al [29] and Tumminello et. al [30] for details of the

methodology). In this case, the graph is a subset of the entire network, but with 3N-6 edges,

i.e., it has more information than the MST. The resulting PMFG network contains the MST

[28]. For this network, the length of the PMFG (PMFGL) is determined in the same way as in

Eq 2; the summation is done on the PMFG network and not on the MST. Obviously, for the

same period, the PMFGL will always be longer than the MSTL because the former admits a

greater number of edges.

3.3 Forecasting model and evaluation

We build two forecasting models to evaluate the predictive power of the VIX, VSTOXX, and

VXJ. In Table 3, Panel A, we name "core models" to forecasting models for our in-sample and

out-of-sample tests, that include the variation of the VIX (henceforth, VVIX), the variation of

the VSTOXX (henceforth, VVSTOXX), the variation of the VXJ (henceforth, VVXJ), and

include a principal component that combines the three previous implied volatility indices. Sec-

ond, for our out-of-sample tests, we named "benchmark models," a model AR(p) used in the

forecasting literature to compare predictive power [31,32]. All models are estimated using het-

erogeneous autoregressive (HAR) methodologies (See Table 3).

Table 3. Forecasting models.

Panel A–Core Models

(1) VMSTLi;t ¼ cþ bi � VVIXt� 1 þ gi;k � VMSTLi;t� k þ ei;t

(2) VMSTLi;t ¼ cþ bi � VVSTOXXt� 1 þ gi;k � VMSTLi;t� k þ ei;t
(3) VMSTLi;t ¼ cþ bi � VVXJt� 1 þ gi;k � VMSTLi;t� k þ ei;t

(4) VMSTLi;t ¼ cþ bi � VVIXt� 1 þ bi � VVSTOXXt� 1 þ bi � VVXJt� 1 þ gi;k � VMSTLi;t� k þ ei;t
(5) VMSTLi;t ¼ cþ bi � PCt� 1 þ gi;k � VMSTLi;t� k þ ei;t

Panel B–Benchmark Models

(2) VMSTLi;t ¼ cþ gi;k � VMSTLi;t� k þ ei;t

Source: Authors’ elaboration.

https://doi.org/10.1371/journal.pone.0250846.t003
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VMSTLt is the variation of the global minimum spanning tree length in the month t,
VVIXt-1 is the first lag of the variation of VIX in the month t, VVSTOXXt-1 is the first lag of the

variation of VSTOXX in the month t, VVXJt-1 is the first lag of the variation of VXJ in the

month t, PCt-1 is the first lag of the principal component estimate with the varimax rotated

method that combine the VIX, VSTOXX, and VXJ in the month t, VMSTLt-k is the global min-

imal spanning tree length in k lags, and et is disturbance error in the month t.
We use AR(p) models as benchmarks due to the autocorrelation and stationarity of the

MSTL time series. We perform autocorrelation and stationarity analysis of the MSTL time

series, finding persistence and stationarity, which allows ruling out benchmark models of ran-

dom walks.

As mentioned, this paper aims to test the existence of Granger causality from the implied

volatilities indices toward the synchronization of returns of the assets network. In this sense,

we consider the following null hypothesis H0: βi = 0. This null hypothesis posits that the

implied volatility indices have no role in predicting the variation of the asset structure. We test

these hypotheses both in-sample and out-of-sample focusing on one-step-ahead forecasts fol-

lowing Clark and McCracken [33].

We evaluate the in-sample test using the t-statistic associated with the coefficient of the

minimal spanning tree length (MSTL). The Central Limit Theorem for weakly stationary pro-

cesses (e.g., Hamilton and Susmel [34] requires a proper estimation of the long-run variance.

For this purpose, we use HAC standard errors following Newey and West [35,36] because the

VMSTL time series is autoregressive and has seasonal factors.

To mitigate the usual overfitting problems associated with in-sample analyses, we also con-

sider out-of-sample analyses. For this, we use the ENCNEW test proposed by Clark and

McCracken [33]. This test is important since our benchmark models are nested in our core

models (See Table 3); hence, the usual tests of forecast evaluation become degenerate under

the null hypothesis [37–39]. The ENCNEW has a non-standard asymptotic distribution, but

critical values for one-step- ahead of forecasts are tabulated in Clark and McCracken [33]. In

particular, under the null hypothesis, the asymptotic distribution of the ENCNEW is a func-

tion of Brownian motions depending on the number of the excess parameters in the nesting

model (in our case, this parameter is 1 or 3, depending on the model), on the scheme being

used to estimate our models (in our case, expanding windows), and on the parameter defined

as the limit of the ratio P/R, where P is the number of one-step-ahead forecasts and R is the

size of the first expanding window used in the out-of-sample analysis. See West [39] and Clark

and McCracken [33] for a survey on out-of-sample evaluation.

In this way, on the one hand, we estimate our models with all the available observations for

our in-sample analyses. On the other, for our out-of-sample analyses, we split the sample in

two: an initial estimation window of size P and an evaluation window of size R, such that T = P
+ R, where T is the total number of observations. To avoid any concern about our data’s spe-

cific splitting, we use three different approaches to split our sample. First, we use one-third of

our observations for initial estimation and two-thirds for evaluation (this means P/R = 2). Sec-

ond, we use a half of our observations for initial estimation and the other half for evaluation

(this means P/R = 1). Third, we use two-thirds of our observations for initial estimation and

one-third for evaluation (this means P/R = 0.4).

3.4. Impulse response function and forecasting error variance

decomposition

In this stage of the analysis, we follow Hamilton [40] notation and results for VAR(p) pro-

cesses. Let Yt be a (nx1) vector containing the values of n variables at time t. Suppose that the
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dynamics are determined by a pth-order VAR as follows:

Yt ¼ cþ r1Yt� 1 þ � � � þ rpYt� p þ εt ½Eq 3�

Where c is an (nx1) vector collecting the drifts in each equation, ρi are (nxn) coefficients

matrices and εt is i.i.d N(0, O).

According to Wold (or MA(1)) representation theorem, every weak-stationary and purely

non-deterministic process allows the following representation:

Yt ¼ cþ εt þC1εt� 1 þC2εt� 2 þC3εt� 3 þ � � � ½Eq 4�

In this sense, the matrix Cs has the following interpretation

@Ytþs

@εt0
¼ Cs ½Eq 5�

Notice that a sequence of row i, column j element ofCs (say
@Yi;tþs
@εjt

) as a function of s is what we

called the impulse-response function. However, note that the elements of εt are contemporane-

ously correlated; this is, a positive shock in the first variable (say, ε1t>0) is related to the values of

ε2t, ε3t,. . .,εnt. In other words, in general,O is not a diagonal matrix. One evident approach is to

decompose the VAR innovations into a set of uncorrelated components (what is known as the

orthogonalized impulse-response function). To this end, recall thatO = V(εt) is a positive definite

symmetric (nxn) matrix, hence, it has a unique representation of the formO = ADA0; where A is a

lower triangular matrix A with 1s in the main diagonal, and D is a diagonal matrix.

Let ut be a (nx1) vector such that ut = A−1εt. As εt is white noise, it is uncorrelated with its

own lags. Hence, ut is also uncorrelated with its own lags and lagged Yt values. Moreover,

notice that EðututÞ ¼ A� 1Eðεtε
0
tÞA

� 1 ¼ D; in other words, as D is a diagonal matrix, the ele-

ments of ut are uncorrelated. Also, notice that Aut = εt, hence the elements under the main

diagonal in A capture the covariances among contemporaneous shocks. Let aj be the jth col-

umn of the matrix A, then the sequence of Csaj as a function of s is the orthogonalized

impulse-response function.

Finally, consider the Cholesky decomposition of O

O ¼ PP0 ½Eq 6�

Where P = AD0.5; P collects the standard deviations of ut in its main diagonal. Let pj be the

jth column of P, then Cspj ¼ Csaj

ffiffiffiffiffiffiffiffiffiffiffiffi
VðujtÞ

q
. Thus, this last expression measures the dynamic

system’s consequences due to an increase in Yjt of
ffiffiffiffiffiffiffiffiffiffiffiffi
VðujtÞ

q
units. Note that the ordering of the

VAR´s variables is relevant for the orthogonalization. Our argument in this paper is that the

VIX is a forward-looking implied volatility measure that should precede the network asset´s

correlation. As our results in next Section suggest, it seems that the VIX tends to anticipate

(Granger-cause) future movements in the MSTL; accordingly, the first variable in the left hand

side of our system is the VIX.

4 Empirical results

Our empirical results have three parts. Firstly, we report the estimation results of 5 core models

(See Table 3, Panel A) using in-sample data. Secondly, we evaluate the forecasting performance

with our benchmark models (Table 3, Panel B) and calculate the ENCNEW out-of-sample test

of Clark and McCracken [33]. Finally, we present the impulse response function (IRF) and

forecasting error variance decomposition results of our core models.
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4.1 In-sample analysis

Tables 4 and 5 report estimates of core models presented in Table 3 panel A. We consider

monthly frequencies and use HAC standard errors [33,35]. We show a negative and statisti-

cally significant relationship between the lagged implied volatility and the variation of the

global and regional MSTL and PMFGL. In other words, an increase of the implied volatility is

a preview of a contraction in the stock market networks. Thus, when investors increase their

expectations regarding the volatility of the markets (implied volatility), our interpretation indi-

cates that they make investment decisions that tend towards a standard, like a herd behavior

effect, causing asset prices to behave similarly—increasing in consequence, the correlation of

the stock indices. From this perspective, the main implication of volatility, as a market senti-

ment manifestation, is noteworthy. As our results point out, an increase in volatility expecta-

tions, seen from a behavioral perspective as a fear feeling, generates an increase in the markets’

correlation, limiting the benefits of portfolio diversification.

To avoid the loss of information, we measure the behavior of the global network of assets

using two measurements. Table 4, panel A represents the network with the MSTL, while panel

B, shows the network with the PMFGL. Using both measures has the advantage that the MSTL

only includes the most significant correlations in the network, while the PMFG includes all the

correlations. As shown, the results do not vary much between the two measures. In the case of

the MSTL, the three implicit volatility indices are negative and statistically significant (See

Table 4 column 1–3), although the VIX (beta: -0.184, se: 0.059) presents greater magnitude

and statistical significance compared to the others volatility indices. The estimates of the

PMFG provide similar results (See Table 4 column 6–8) where the VIX maintains its prepon-

derance in magnitude and statistical significance (beta: -0.189, se: 0.061), but the VSTOXX

Table 4. Forecast variation in MSTL and PMFGL with volatility indices.

VMSTL-G VPMFGL-G

1 2 3 4 5 6 7 8 9 10

C -0.003 -0.004 -0.004 -0.003 -0.004 -0.004 -0.004 -0.004 -0.003 -0.004

0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009

VVIX(-1) -0.184��� -0.191� -0.189��� -0.190��

0.059 0.080 0.061 0.083

VVSTOXX(-1) -0.149� 0.042 -0.152�� 0.055

0.071 0.101 0.068 0.099

VVXJ(-1) -0.129� -0.037 -0.145��� -0.060

0.052 0.062 0.052 0.066

PC2(-1) -0.023��� -0.024���

0.009 0.009

R-squared 0.312 0.292 0.290 0.314 0.306 0.321 0.300 0.303 0.324 0.316

Adjusted R-squared 0.267 0.246 0.243 0.261 0.260 0.276 0.254 0.258 0.272 0.271

S.E. of regression 0.129 0.131 0.131 0.130 0.130 0.133 0.135 0.135 0.134 0.134

Sum squared resid 3.320 3.418 3.429 3.313 3.351 3.546 3.653 3.636 3.530 3.570

Log likelihood 140.957 137.840 137.508 141.176 139.964 133.923 130.759 131.251 134.401 133.223

F-statistic 6.949 6.307 6.240 6.001 6.742 7.223 6.564 6.665 6.284 7.076

In-sample analysis with monthly data and core specification from Table 3. In all models we included, yet not show, an AR(12) that stands for lag monthly of the

dependent variable.

�p < 10%

��p < 5%

���p < 1%. Source: Authors’ elaboration.

https://doi.org/10.1371/journal.pone.0250846.t004
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(beta: -0.152, se: 0.059) and the VXJ (beta: -0.145, se: 0.052) increase their statistical

significance.

We estimate a core model including the three volatility indices (See Table 4, columns 4 and

9) to discriminate between the three volatility indices. The results are consistent in positioning

the VIX as the volatility index with the highest predictive power and statistical significance

(beta: -0.190, se: 0.009). Additionally, in terms of the adjusted coefficient of determination, the

improvement is marginal when comparing the estimation models with the VIX and the esti-

mation models with the three volatility indicators, providing additional arguments of the

VIX’s relevance to the other volatility indicators.

To further explore the combined effect of the three volatility indicators we organized a final

estimate. Previously, we performed a principal components method to extract the information

from the three volatility indicators. Table 4 columns 5 and 10 show a negative and significant

coefficient (beta: -0.023, se: 0.009) for the MSTL and (beta: -0.024, se: 0.009) for the PMFGL.

Although both models do not contribute additional information when comparing the adjusted

coefficients of detection with models that only incorporate the VIX.

Finally, we analyze the above models considering regional stock markets. As Table 5 shows,

results are similar according to the geographical areas. The VIX remains the predominant

index to predict changes in America’s correlation network (beta: -0.231, se: 0.070), Asia, and

Oceania (beta: -0.219, se: 0.057). For Europe’s case, the results are not consistent with what

was expected since the VSTOXX index does not present statistical significance to produce

changes in Europe’s network, compared to its Japanese counterpart, the VXJ (Beta: -0.212, se:

0.067). Despite these differences, our evidence indicates that the VIX and the main factor con-

structed between the three volatility indices provide the possibility for predicting changes in

the network of correlations of both the global stock assets and each region.

4.2 Out of sample

Tables 6 and 7 exhibit the ENCNEW test results in out-of-sample exercise for the Americas,

Europe, and Asia-Oceania. To add more rigor to the test, we separated the American zone

into two sub-zones, North America and Latin-America. These tables focus on the benchmark

models described in Table 3, panel B. The results correspond to the statistical difference

between the benchmark model presented in Table 3 panel B (with VMSTL and VPMFGL)

versus the core models presented in Table 2 panel A, when the number of observations to

make the forecast 40% (P/R = 0.4), 50% (P/R = 1), and 67% percent (P/R = 2) of the total

sample.

Table 6, panel A, shows the contrast tests between the benchmark model (Table 3, Panel B)

and the first core model (Table 3, Panel A, row 1). For the case of predicting the changes in the

global asset network measured by the MSTL (Table 6, panel A, column 2) and by the PMFGL

(Table 6, panel A, column 8) with the lagged one-period variation of the VIX. We reject the

null hypothesis, which means that the forecast model that incorporates the lag of the VIX vari-

ation is statistically better than the benchmarks models. This result is repeated for all regions,

although with a significance level that fluctuates between 1% and 10%.

Regarding VSTOXX analysis (See Table 3, Panel A, row 2), the core models (incorporating

the one-month lag variation of the VSTOXX) obtain worse results than the VIX. Like the tests

within the sample, we observe an inconsistency with our expectations for Europe since the

models that incorporate the VSTOXX have worse performance than the benchmark. Notwith-

standing this, at the global level, as in the rest of the regions, the VSTOXX models present an

acceptable statistical significance at P/R = 0.4 that fluctuates between 5% and 10%, demonstrat-

ing a moderate-acceptable predictive power.
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Similarly, we find results regarding the predictive power of the VJX (See Table 3, Panel A,

row 3). The predictive model that includes the VJX lag only for the Latin-America region

turns out to be statistically significant only in P/R = 1. The VJX shows a statistically significant

predictive power that fluctuates between 1% and 10% for the rest of the global and regional

samples.

Finally, we assess the predictive power of models that consider the combined effect of the

volatility indices (See Table 3, row 4–5). As shown, we observe favorable results for the princi-

pal component model compared to the model that includes all the indices separately. Table 7

shows that for the principal component (see Table 7, panel A), the models are statistically supe-

rior to the benchmark model for the global and regional samples. In contrast, models with the

three volatility indices separately (See Table 7, panel B) are only significant for Europe, Asia-

Oceania, America, and globally when measured by the PMFGL. The significance fluctuates

between 5% and 10%.

4.3 VAR

Table 8 exhibits our results for a VAR(2) using the VIX and the networks measures (MSTL) of

each region. We select the order of the VAR (p = 2) using the Hannan-Quinn Information cri-

teria. Our focus here is to study the Granger-causality relationships; in this atheoretical VAR,

we may find Granger-causality in one direction (say, the VIX predicting the MSTL) in the

opposite direction (the MSTL predicting the VIX), or both. We emphasize that we are not

attempting to identify the channels of transmissions by any means; on the contrary, we are just

Table 6. Forecast variation in MSTL with volatilities indexes.

Panel (A) VVIX model

(1) (2) (3) (4) (5) (6) (7) (8)

P/R GLOBAL ASIAOC EUROPE LATAM NORTH AMERICA AMERICA GLOBAL�

0.4 2.37�� 2.81�� 1.34� 1.92�� 3.37��� 2.47�� 2.40��

1 8.49��� 14.75��� 2.01�� 7.47��� 10.15��� 9.45��� 8.67���

2 2.22�� 2.47�� 0.46 1.90�� 2.67�� 2.61�� 2.20��

Panel (B) VSTOXX model

P/R GLOBAL ASIAOC EUROPE LATAM NORTH AMERICA AMERICA GLOBAL�

0.4 1.26� 2.07�� -0.71 1.33� 2.00�� 1.96�� 1.23�

1 3.44��� 8.06��� -0.48 4.72��� 5.71��� 6.77��� 3.46���

2 1.03� 1.82��� -1.96 1.29� 1.04� 1.65�� 0.93

Panel (C) VXJ model

P/R GLOBAL ASIAOC EUROPE LATAM NORTH AMERICA AMERICA GLOBAL�

0.4 1.77�� 1.33� 2.35�� 0.82 2.18�� 1.74�� 2.04��

1 4.98��� 2.99�� 6.40��� 2.27�� 11.36��� 4.99��� 6.30���

2 1.20� 0.92 1.29� 0.81 1.27� 1.44� 1.44�

Out-of-sample analysis with monthly data, (P/R = 0.4). 10%, 5%, and 1% critical values are 0.685, 1.079, and 2.098,

respectively, when there is only one excess parameter. (P/R = 1). 10%, 5%, and 1% critical values are 0.984, 1.584, and

3.209, respectively, when there is only one excess parameter. (P/R = 2). 10%, 5%, and 1% critical values are 1.280,

2.085, and 4.134, respectively, when there is only one excess parameter. P represents the number of one-step-ahead

forecasts, R the sample size of the first estimation window. All models are evaluated with AR(12), benchmark

corresponds to model 1.

�p < 10%

��p < 5%

���p < 1%. Source: Authors’ elaboration.

https://doi.org/10.1371/journal.pone.0250846.t006
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interested in studying the dynamic effects of the system (e.g., establishing if one variable helps

forecast the other beyond a simple autoregressive benchmark).

Some highlights of Table 8 are worth mentioning. First, the relationship between the MSTL

in each region and the first lag of the VIX is negative in all VAR equations. These results are

consistent with our main argument in this paper: the VIX is a forward-looking measure of

implied volatility that precedes a higher correlation among the network’ assets. Second, the

first lag of the VIX is significant at the one percent level in seven out of eight cases: this is con-

sistent with the idea that the VIX may Granger-cause the network’s correlations. Third, none

of the lagged MSTLs network measures is significant in Table 8 Column 2; in other words, we

do not find evidence that the MSTL Granger-cause the VIX. Finally, we notice differences

between the VIX equation (Table 8 Column 2) and MSTLs equations (Table 8 Columns 3–8)

in terms of the adjusted: for Table 8 Columns 3–8, the adjusted goes from 0.164 to 0.364, while

the adjusted in Column 2 is only 0.037. All in all, the results of Table 8 suggest the existence of

Granger-causality, and this predictability seems to go from the VIX to the network asset’s

correlations.

Fig 3 shows the impulse-response function derived from our VAR. We exhibit the response

of the MSTL of each region after a shock of one standard deviation in the VIX. Consistent with

our previous findings, the MSTL in each region responds negatively (i.e., they tend to be more

correlated since the length of the MST shrinks) after a positive shock in the VIX. Moreover, in

all cases, this response is significant one period after the shock. Notably, in each region, the

shock is rapidly absorbed after the first period. In other words, there are no significant differ-

ences with the counter-factual two months after the shock.

Table 7. Forecast variation in MSTL with volatilities principal component.

Panel (A) Principal component model

(1) (2) (3) (4) (5) (6) (7) (8)

P/R GLOBAL ASIAOC EUROPE LATAM NORTH AMERICA AMERICA GLOBAL�

0.4 1.90�� 2.29�� 1.39� 1.49� 2.79�� 2.23�� 2.05��

1 7.36��� 10.13��� 2.35�� 6.34��� 10.99��� 9.18��� 7.90�

2 1.59�� 1.95�� 0.31 1.44� 1.95�� 1.99�� 1.65��

Panel (B) VVIX–VSTOXX—VXJ model

P/R GLOBAL ASIAOC EUROPE LATAM NORTH AMERICA AMERICA GLOBAL�

0.4 1.84 2.36� 2.74�� 1.67 1.86 2.03� 1.93�

1 6.39��� 10.36��� 5.52��� 6.57��� 6.01��� 7.55��� 6.55���

2 1.98�� 2.63�� 3.54��� 1.12 2.53�� 2.15�� 2.28��

Forecasting VMSTL and PMFGL changes with volatilities indexes. Panel A show out-of-sample analysis with

monthly data, (P/R = 0.4). 10%, 5%, and 1% critical values are 0.685, 1.079, and 2.098, respectively, when there is only

one excess parameter. (P/R = 1). 10%, 5%, and 1% critical values are 0.984, 1.584, and 3.209, respectively, when there

is only one excess parameter. (P/R = 2). 10%, 5%, and 1% critical values are 1.280, 2.085, and 4.134, respectively,

when there is only one excess parameter. Panel B show out-of-sample analysis with monthly data, (P/R = 0.4). 10%,

5%, and 1% critical values are 1.285, 1.865, and 3.098, respectively, when there are three excess parameters. (P/R = 1).

10%, 5%, and 1% critical values are 1.905, 2.709, and 4,574, respectively, when there are three excess parameters. (P/

R = 2). 10%, 5%, and 1% critical values are 2.366, 3.564, and 5.805, respectively, when there are three excess

parameters. P represents the number of one-step-ahead forecasts, R the sample size of the first estimation window.

All models are evaluated with AR(12), benchmark corresponds to model 1.

�p < 10%

��p < 5%

���p < 1%. Source: Authors’ elaboration.

https://doi.org/10.1371/journal.pone.0250846.t007
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Finally, following [19] Table 9 considers how each of the orthogonalized disturbances con-

tributes to the mean squared error (MSE) in the h-periods-ahead forecasts. First, we notice

that most of the MSTLs tend to be very autoregressive; in each MSTL, their lags explain most

of the variance in the MSE. For instance, about sixty percent of the variance in the MSTL of

Europe is explained by the same network; an even more extreme case is the MSTL of North

America, in which their lags are accounting for about ninety percent of the MSE variance.

Table 8. VAR Results for VIX and MSTLs models.

(1) (2) (3) (4) (5) (6) (7) (8)
VIX MSTL MSTL AME MSTL ASIOC MSTL EUR MSTL LAT MSTL NAM

VIX(-1) -0.213��� -0.161��� -0.189��� -0.202��� -0.095 -0.190��� -0.284���

(0.083) (0.055) (0.065) (0.059) (0.094) (0.066) (0.098)

VIX(-2) -0.100 -0.037 -0.011 -0.053 -0.036 -0.007 -0.067

(0.084) (0.056) (0.065) (0.059) (0.095) (0.067) (0.099)

MSTL(-1) 0.581 -1.296��� -0.958� -0.505 -0.580 -0.758 -0.726

(0.714) (0.473) (0.557) (0.504) (0.806) (0.569) (0.840)

MSTL(-2) 0.699 -1.090�� -1.008� -0.785 -0.950 -0.461 -1.693��

(0.718) (0.476) (0.560) (0.507) (0.811) (0.572) (0.845)

MSTL AME(-1) -0.433 0.339 -0.075 0.300 0.100 0.625� -0.360

(0.447) (0.296) (0.349) (0.316) (0.505) (0.356) (0.526)

MSTL AME(-2) -0.311 0.098 0.008 0.105 -0.046 0.051 0.268

(0.452) (0.299) (0.352) (0.319) (0.510) (0.360) (0.531)

MSTL ASIOC(-1) -0.048 0.325 0.526�� -0.405� 0.242 0.390 0.417

(0.302) (0.200) (0.235) (0.213) (0.341) (0.240) (0.355)

MSTL ASIOC(-2) -0.142 0.356� 0.491�� -0.046 0.555 0.231 0.898��

(0.307) (0.203) (0.239) (0.216) (0.346) (0.244) (0.361)

MSTL EUR(-1) -0.172 0.216� 0.242� 0.179 -0.360� 0.181 0.220

(0.182) (0.121) (0.142) (0.128) (0.206) (0.145) (0.214)

MSTL EUR(-2) -0.250 0.234�� 0.262� 0.262�� -0.037 0.146 0.434��

(0.181) (0.120) (0.141) (0.128) (0.205) (0.144) (0.213)

MSTL LAT(-1) -0.142 -0.010 -0.164 -0.021 0.276 -0.840��� 0.443

(0.294) (0.195) (0.230) (0.208) (0.332) (0.235) (0.346)

MSTL LAT(-2) -0.066 0.149 0.043 0.143 0.343 -0.210 0.205

(0.293) (0.194) (0.229) (0.207) (0.331) (0.234) (0.345)

MSTL NAM(-1) 0.166 -0.131� -0.194�� -0.131� -0.108 -0.201�� -0.678���

(0.104) (0.069) (0.081) (0.074) (0.118) (0.083) (0.123)

MSTL NAM(-2) 0.087 -0.022 -0.065 -0.034 -0.004 0.004 -0.393���

(0.104) (0.069) (0.081) (0.074) (0.118) (0.083) (0.123)

Constant 0.001 -0.001 -0.002 -0.001 -0.002 -0.001 -0.004

(0.014) (0.009) (0.011) (0.010) (0.015) (0.011) (0.016)

F-statistic 1.615 4.407 7.412 6.028 4.121 6.144 10.058

Adj. R-squared 0.037 0.177 0.288 0.241 0.164 0.245 0.364

VAR analysis with monthly data and core specification from Table 3. Akin to this exercise, in unreported results, we

also consider VAR using the VSTOXX and the VXJ instead of the VIX. Our results are very similar and they are

available upon request.

�p < 10%

��p < 5%

���p < 1%. Source: Authors’ elaboration.

https://doi.org/10.1371/journal.pone.0250846.t008
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Second, notice that the VIX explains an essential proportion of the variance in most cases: for

h = 1, it ranges from 12.89 through 31.89 percent across all exercises. Finally, with only two

exceptions, the VIX is always the second most important source of variance for the MSTLs.

In summary, we think the message of this section is clear and consistent with our forecast-

ing exercises: a) the VAR, impulse-response functions, and MSE variances decomposition sug-

gest Granger-causality from the VIX to the MSTLs (but not in the opposite direction), b) this

relationship is negative (more volatility precedes a more correlated network), and c) the pre-

dictive content of the VIX goes beyond purely autoregressive benchmarks.

5 Conclusions

Indices based on implied market volatility expectations, such as the VIX, have been extensively

studied by academics and used by practitioners. Among their main attributes, these indices are

essential to measuring the degree of near-term uncertainty of the markets, possessing the abil-

ity to predict the volatility of financial assets’ returns, and providing useful information to mar-

ket participants and regulators.

Notwithstanding, the indices’ predictive power for the synchronization of the financial

markets is still unknown to our best understanding. Although the literature shows links

between implied market volatility, stock returns, and economic uncertainty, there is still a

necessity for shedding light regarding the predictive power of the volatility indices. As the lat-

est financial turmoil episodes show, we are not fully aware of the factors behind periods of

high synchronization of returns.

In this research, we explore the predictive power of the three main implicit volatility indices

of the world, both separately and together, to study their impact on the stock network made up

of the correlations of returns for the most relevant world equity indices. These networks serve

as a vehicle to the quantitative dynamic representation of the broad phenomenon of synchro-

nization of financial markets.

Our main results indicate a strong predictive power of the implicit volatility indicators on

the synchronization of stocks’ returns. Being the VIX, the index that exhibits superior predic-

tive performance compared to VSTOXX and VXJ alternatives. The latter occurs in both the

regional and global networks. We observe that an increase in the market’s implied volatility is

a predictor of an increase in the synchronization of the stock markets in the following month.

Fig 3. Impulse response graphs. Note: This figure depicts the impulse response exercise from a shock in VIX over the

MSTLs of North-America (NAM), Europe (EUR), Asia-Oceania (ASIOC), All-shares (AS), Latin America (LAT), and

America (AME, North and Latin America). This figure depicts the impulse response exercise from a shock in

VSTOXX over the MSTLs of America (AME, North and Latin America), All-shares (AS), Asia-Oceania (ASIOC),

Europe (EUR), Latin America (LAT), and North America (NAM). This figure depicts the impulse response exercise

from a shock in VXJ over the MSTLs of America (AME, North and Latin America), All-shares (AS), Asia-Oceania

(ASIOC), Europe (EUR), Latin America (LAT), and North America (North America).

https://doi.org/10.1371/journal.pone.0250846.g003
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To study the existence of Granger-causality from the VIX, VSTOXX, and VXJ to the MSTL,

we apply a Structural VAR, finding strong evidence that the implicit volatility indices generate

stock market synchronization. We conjecture that an increase in the implied volatility is a sign

of rising uncertainty and future greater volatility and financial risk expectations. As the litera-

ture shows, this factor moves investors to make similar financial decisions. This behavior, as a

herding factor, causes prices of financial assets to synchronize.

From an investor perspective, an increase in synchronization reduces the chances of well-

diversifying investment portfolios, increasing the cost of managing risks and reducing the

long-term return on investments. From a financial regulator’s point of view, the synchroniza-

tion of financial markets is important because an increase in it would have dangerous

Table 9. Forecast error variance decomposition results for the period from 2001 to 2020.

(1) (2) (3) (4) (5) (6) (7) (8)
h VIX MSTL MSTL AME MSTL ASIOC MSTL EUR MSTL LAT MSTL NAM

Variance Decomposition of MSTL NAM

1 12.894 0.000 0.000 0.000 0.000 0.000 87.106

2 8.499 0.194 0.139 0.281 0.146 0.388 90.352

3 8.463 0.337 0.873 0.273 0.168 0.470 89.416

4 8.213 0.349 1.229 0.748 0.264 1.218 87.978

Variance Decomposition MSTL EUR

1 25.525 0.000 0.000 0.000 64.319 0.000 10.157

2 22.494 0.344 0.015 0.094 63.718 0.858 12.477

3 22.307 0.717 0.017 0.405 63.186 0.854 12.515

4 21.797 0.847 0.029 1.417 62.316 1.225 12.369

Variance Decomposition of MSTL ASIOC

1 19.493 0.000 0.000 64.529 6.879 0.000 9.100

2 15.179 0.068 0.311 65.924 5.478 0.344 12.695

3 16.471 0.111 0.322 64.526 5.368 0.556 12.646

4 15.938 0.192 0.360 64.278 5.249 1.281 12.701

Variance Decomposition of MSTL

1 31.886 8.017 0.000 14.525 24.837 0.000 20.734

2 25.880 8.505 0.480 13.961 22.870 0.634 27.671

3 26.319 8.364 0.549 13.735 22.478 0.707 27.848

4 25.984 8.619 0.561 13.567 22.174 1.357 27.737

Variance Decomposition of MSTL LAT

1 21.752 40.287 0.000 2.855 4.167 19.556 11.383

2 16.527 41.485 1.055 2.211 3.562 18.749 16.411

3 16.944 39.883 1.625 2.292 3.484 18.164 17.608

4 16.974 40.116 1.635 2.271 3.474 18.017 17.513

Variance Decomposition of MSTL AME

1 25.311 29.274 3.719 1.685 3.608 5.504 30.899

2 18.350 31.225 2.685 1.294 2.755 4.554 39.138

3 18.479 30.605 2.590 1.551 2.665 4.713 39.397

4 18.474 30.649 2.575 1.565 2.666 4.914 39.157

This table reports the results of forecast error variance decomposition (percentage points) among VIX, MSTL, and

MSTL of each region. The variance decomposition is based on the Cholesky ordering VIX, MSTL, and each regional

MSTL. Source: Authors’ elaboration.

https://doi.org/10.1371/journal.pone.0250846.t009
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consequences on the risk of financial contagion in markets. Our work helps them in the task of

monitoring this phenomenon dynamically. Finally, regulators, financial institutions, and

investors, in general, should measure, monitor, and estimate synchronization to improve deci-

sion-making and take actions in advance for diminishing the impact of shocks.

A natural extension of this work relates to the development of structural financial and eco-

nomic models that help explain the factors behind the phenomenon of synchronization of

returns. Although our study shows a Granger causality phenomenon interpreted as the predic-

tive power of volatility indices on the stocks’ returns synchronization, this is the first step for

gaining comprehensive knowledge above this peculiar financial market behavior.

Another extension is to study the link between Quantitative easing (QE) and stock market

synchronization. The Federal Reserve Bank’s actions during turmoil periods, such as the

2008–09 crisis or covid pandemic 2020–21, executing quantitative easing (QE) policy, have

had a significant impact on the behavior of worldwide financial markets in terms of returns

and volatility ([19]). Analyzing volatility spillover networks, these authors find that the US

markets are a powerful spillover source towards the rest of financial markets that under certain

conditions could destabilize markets, enhancing global systemic risk. Specifically, through

Treasury Bonds rates, QE provokes that TBond volatility acts as an exogenous source of spill-

over volatility in contemporaneous time, influencing VIX. They also state that US stock volatil-

ity (VIX) is a prime source of volatility towards other stock markets. Considering those above,

we conjecture that QE would probably impact the stock network’s behavior in two ways in our

research framework. Firstly, directly affecting the synchronization of the markets, as Yang and

Shou (2016) evidence. Secondly, indirectly influencing the VIX, which will impact the rest of

the other markets’ synchronization, as our results indicate.
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