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Abstract: We evaluate the environment, society, and corporate governance rating (ESG rating)
contribution from a new perspective; the highest ESG rating mitigates the impact of unexpected
change in the implied volatility on the systemic stock market risk. For this purpose, we use exchange-
traded funds (ETF) classified by their ESG rating into quartiles to estimate the synchronization as
a proxy by systemic risk. Then, for each ETF quartile, we study the effect of the implied volatility
over the synchronization. Our study is the first to model sustainable ETFs’ synchronization by
combining econometric modeling and network methods, including 100 ETFs representing 80% of
the global ETF market size between 2013 and 2021. First, we find that a higher ESG rating mitigates
the effect of implied volatility over ETF synchronization. Surprisingly, the effect is the opposite in
the case of ETFs with lower ESG ratings, where an increase in the volatility expectation increases the
synchronization. Our study depicts the effect of sustainable ETFs on lessening the systemic risk due
to returns synchronization, this being a novel contribution of this asset class. Finally, this paper offers
extensions to deepen the contribution of other asset classes of ETFs in terms of their synchronization
behavior and impact on risk management and financial performance.

Keywords: ETF; ESG ratings; risk management; econometric modeling; network analysis; volatility
shocks; financial market synchronization

MSC: 91B05; 91G45; 91G70

1. Introduction

During the last years, we observed the demand for the financial system to be part of
climate and social action through new standards for the management of business, invest-
ments, and the statement of public information reformulated through the environment,
society, and corporate governance (ESG) quality criteria. The ESG parameters include
environmental, social, and governance factors in the investment decision-making process
as crucial elements of governments’ and regulatory institutions’ goals, which nowadays
are a critical component for the most relevant asset managers worldwide [1]. Specifically,
the environmental factor measures how a firm manages its impacts on the environment.
Social criteria capture how the company manages its relationships with its stakeholders.
Additionally, governance captures the elements to protect the shareholders’ interests.

Parallel to the extension of ESG in financial markets, ref. [2] observes that we have
experienced an expansion in global economic and sociopolitical openness in the last two
decades, which has determined greater financial integration. Major financial integration
and economic openness generate a higher inter-connectedness and complexity in capital
markets. As a result, to understand and model complex economic systems, it is necessary
to consider and simplify multiple actors with many interaction rules of several degrees and
non-linearities, among other characteristics [3]. For these reasons, there are advantages
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to using network approaches because, for example, it is feasible to estimate the distance
between two components of the system together with how likely an indirect effect is
between them that could be relevant to consider in a broad model.

Greater integration, in turn, requires better management of macroeconomic and finan-
cial risks, which have increased in importance given the more significant links between
markets. This increase in the degree of connections and the number and diversity of fi-
nancial assets argues the need for new methodologies that classify, prioritize, and analyze
the complex dynamic reality of financial markets in an integrated and, simultaneously,
simplified way. In this sense, network methods efficiently describe large complex systems
collaborating to reduce dimensionality. Furthermore, the globalization of financial markets
increased the number of investment products and lowered the entry barriers for investors
worldwide. For instance, the supply of Exchange Trade Funds (ETF) in 2010 went from
USD 1.3 billion in assets under management (AUM) to USD 7.7 billion in 2021 [4].

Moreover, the ETF industry accounted for 16 percent of U.S. stock market capitalization
at the end of 2021, surpassing the 14 percent held by the mutual funds industry. The ETF
example highlights a broad market phenomenon: a global financial market more integrated,
interdependent, and connected [5]. Consequently, the returns between financial assets are
more prone to be synchronized.

Synchronization phenomena relate to the co-movement of asset returns; their max-
imum levels being coincident with important economic shocks and high global equity
market volatilities [6]. Hence, the synchronization for the equity markets is relevant be-
cause an increase in the co-movements of returns generates financial contagion on a large
scale [2], even more when the interconnections among financial agents vary over time,
countries, and regions [7], becoming a potential disturbing factor of instability among
market participants and financial institutions such as mutual funds [8].

The utilization at present of ESG scores as inputs for decision making among the
investment community is a pervasive behavior. Because of this, institutional investors
such as mutual funds, pension funds, and ETFs, among others, make substantial efforts
to include high-ESG assets in their investment portfolios and incorporate ESG scores as
inputs for their decision-making process.

This ESG motivation is due to two reasons. First, growth in capital managed by high
ESG funds has grown about twice as fast as low ESG funds. Ref. [9] notes that 11 months
after Morningstar published the mutual fund sustainability ranking in March 2016, mutual
funds with high ESG increased by USD 22 billion, while their peers with low ESG decreased
by USD 12 billion.

Second, high ESG funds are less sensitive to withdrawals during periods of poor
financial performance. Ref. [10] observes a negative (positive) correlation between outflows
and past returns in mutual funds with low (high) ESG scores, indicating that investors
are more likely to redeem fund shares with better performance while maintaining their
fund quotas with poor results. This behavior shows that a high ESG score would increase
investors’ disposition effect [11].

The above evidence on ESG funds highlights the relevance of a better understanding
of the attributes of a financial asset, its risks, and its financial performance. The relationship
between a financial asset’s return and its risk level not only influences its attractiveness
as an investment vehicle but also influences its importance in belonging to investment
portfolios, contributing to the adequate management of financial and corporate risks. The
latter intertwined relationships are especially critical in complex systems such as today’s
global financial markets, characterized by a high level of interconnections, a high level of
interactions, and greater exposure to systemic shocks, especially in contexts with imperfect
and incomplete information. In these scenarios, risk monitoring and their econometric
modeling are vital. For example, modeling the econometric relationship between the
structure of assets and liabilities of banking institutions operating in Europe, Israel, the
United States, and Canada, ref. [12] finds that their structure of assets and liabilities
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and, therefore, their risk management, have a strong influence on their performance
and liquidity.

The rise in the volumes invested in high ESG assets generates interest in learning about
its effects on the performance of capital assets such as stocks, bonds, mutual funds, and
ETFs (see a summary in [13]). However, to the best of our knowledge, the literature related
to understanding the influence of ESG on systemic risk provoked by the synchronization
of returns is scarce. Deepening the monitoring and understanding of systemic risk is
relevant to global financial stability and contagion risk under economic and financial
turmoil. A broad strand of the literature evidences that global shocks provoke high levels of
synchronization, increasing the correlations into the stock market and jeopardizing market
stability, decreasing the benefits of diversification, and increasing the exposure of global
investment portfolios to significant losses [14–18].

Our paper answers the following research question: Are there differences in the
synchronization level between ESG equity ETFs funds with high and low scores? We
conjecture that assets with a higher (lower) level of ESG are less (more) likely to sync
during economic and financial shock events. In other words, assets with high (low) ESG
present a lower (higher) synchronization of returns, allowing investors to diversify with
lower (higher) effectiveness, especially during periods of high volatility and economic and
financial turmoil.

Broadly, we test our hypothesis based on an empirical strategy that stands on network
analysis and econometric models:

1. We use 100 global equity ETF equivalents at 80% of the global amount under man-
agement in this industry and classify these ETFs according to their ESG score in four
quartiles. Specifically, we used the 2021 ESG score to rank the ETFs from the top ESG
score to the bottom ESG score (ESG score for ETFs has been available since 2021 and
is updated quarterly. Nevertheless, none of the ETFs included in this study changed
quarterly between 2021 and 2022).

2. We built the ETF asset correlation network for each quartile to measure the ETFs’
synchronization of returns over time.

3. We apply econometric modeling to study the statistical significance of the CBOE
Volatility Index’s (VIX) influence on this synchronization phenomenon.

We study systemic financial risk by applying network analysis, focusing on ETF mar-
ket synchronization. Specifically, via this empirical strategy, we test the effects of volatility
spillover shocks on the ETF market synchronization and the effect of the ESG rating on the
ability of the ETF network to tolerate changes in the global level of volatility in financial
markets. For this, we calculate the synchronization of returns between January 2013 and
December 2021 using the length of the Minimum Spanning Tree (MSTL) and the length of
the Planar Maximally Filtered Graph (PMFGL). In addition, to capture variation in the tax-
onomy of the ETF network, we measure relevant network parameters such as the diameter
and strength. Finally, we estimate the relationship between VIX and our synchronization
measures by applying regression models with Newey–West standard errors.

As the literature states, these methods properly model the aggregate behavior of
complex systems characterized by interactions between many components. Thus, an
asset represents a small component of the financial system, related simultaneously to
the rest of the assets. Furthermore, considering that the size and diversity of financial
assets and the influence of the financial system increased several times compared with
previous decades [19], thus becoming more visible and easier to reach for new generations
of investors, increasing the synchronized behavior among financial markets.

We hypothesize that high ESG ETFs will synchronize less than low ESG ones under
rising expected market volatility. We think this behavior would occur because investors
believe that assets with a high ESG can better confront the risks that underlie an increase
in implied volatility, which is commonly related to economic and financial crises [19].
A second explanation relates to the affect heuristic, where feelings can give way to a
more reasoned analysis of decisions and guide subsequent judgment and decision making.
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Accordingly, the positive evaluation associated with the ESG score of a financial asset could
influence a positive evaluation regarding its behavior in difficult times such as financial,
economic, or any other shock or crisis that tends to raise the implied volatility of the
financial markets [9,20,21]. Finally, the influence of non-pecuniary motives could also
affect investors. In this sense, investors consider environmental and social factors in their
decision making, causing them to be less reactive to selling high-ESG investments in times
of financial instability compared with low-ESG investments [22–27].

In this sense, this research contributes to studying correlations using network methods
in the ETF funds’ industry categorized according to their ESG level to understand their
synchronization behavior under unexpected shocks in the implicit volatilities in global
equity markets. Specifically, the evidence in this paper is novel and valuable in three ways:

1. We present a new approach to the influence of ESG on the performance of financial
assets, complementing the studies that study profitability and risk. Indeed, we focus
on systemic or contagion risk, using the synchronization of financial markets as a
proxy for the potential danger of contagion of adverse shocks to investment portfolios.

2. Using ETFs has two advantages: (i) ETFs allow us to work with their market return
and systemic risk, allowing us to study changes in the value perceived in the funda-
mentals of each asset in the fund and changes in the market sentiment regarding the
ETF. (ii) ETFs today are the investment vehicle with the most significant expansion in
the financial market regarding assets under management. According to official figures
from Statista, by 2022, the 2010 AUM went from USD 1.3 billion to USD 7.7 billion.

3. We apply financial network methodologies to improve the aggregate understanding
of a complex phenomenon such as synchronization and its impact on a highly relevant
financial asset class that rapidly adopts ESG standards on its investment policies.

The novelty of the study is not only related to the method used but instead the
description of the resulting graph tree as a measure of a general correlation between assets
(in the paper, ETFs synchronization), which corresponds to the length of the MSTL. This
characteristic, which shows the correlation between ETFs in a given period, is the basis
for econometric models to test the hypotheses. In this sense, unlike other studies that use
network measures, they focus on the description of the system, while in this study, we use
them to model the phenomenon of synchronization between ETFs.

The paper has five sections. In Section 2, we review the literature. Section 3 details
the methodology. In Section 4, we present the results. In Section 5, we discuss our results.
Finally, in Section 6, we show the conclusions.

2. Theoretical Background
2.1. Network Methods and Financial Markets

Both the theoretical and empirical literature remarks financial markets behave as a
complex system (See more details in Appendix A), ascertaining that their behavior and their
reaction to disturbances and shocks resemble the behavior of complex systems. As a tool to
model complexity, there are multiple applications of network models in financial markets.
Works applying network models focus on the implications of network properties on the
financial stability and fragility of capital markets [28,29]. Furthermore, there are studies
that explored how the distribution of the links of a network affects the systemic reaction
to shocks and how the connectivity of critical nodes could destabilize the system [30–33].
Likewise, other recent works focus on topics related to transaction networks of financial
assets, portfolio strategies, financial risk, forecasting, and financial crises [8,34–40].

2.2. Systemic Risk and Financial Markets Synchronization

Systemic risk corresponds to the probability of financial contagion caused by sequential
defaults on debt payment obligations, derivatives, and credits [41–44]. Alternatively,
financial contagion is due to losses caused by generalized decreases in the market prices
of financial assets and investment instruments. Fire sales generate these losses and fund
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runs and massive sales derived from the classical fly-to-quality behavior of financial agents
under market turmoil [45].

Market synchronization is critical in the systemic risk derived from financial losses.
Indeed, a significant drop in the price of an asset has different effects if it occurs at times of
high or low synchronization and when the market is under a bearish or bullish trend. Thus,
if an asset price falls when the market is highly synchronized, the probability that this fall
spreads to a large part of the market network is high (low), especially when the market’s
tendency is low (high). On the contrary, if this drop occurs at times of low synchronization,
it will likely extend only to assets that present a high (low) correlation with it, especially
when the tendency of the aggregate market is high (low).

The literature uses network analysis to measure synchronization using Minimum
Spanning Tree (MST) and Planar Maximally Filtered Graph (PMFG) [37,46], which al-
lows visualizing the asset returns regarding the rest of the market and their degree of
co-movement through time. In this regard, ref. [47] observed that the episodes of high
synchronization of financial markets coincide with the collective behavior of investors,
especially when the market shows marked trends. For instance, evidence indicates that
during synchronization of returns —when financial assets exhibit a similar upward or
downward tendency—the network formed by financial assets belonging to the same asset
class tends to display a change in its topology related to the “small-world” property [48].

Market connectedness plays a relevant role in the financial system’s stability. Accord-
ing to [49], a connected network can, on the one hand, better absorb negative impacts and
give the system greater robustness. On the other hand, however, this greater connectedness
can also spread shocks and create greater financial fragility. Nonetheless, synchronization
affects the cost of diversification of investment portfolios. Indeed, during periods of low
synchronization, the costs of diversification are lower since fewer assets in the portfolio are
enough to extract the maximum benefit from diversification. On the contrary, in periods of
high synchronization, it is necessary to incorporate more assets in the portfolio to maintain
diversification, increasing the transaction and administration costs [40].

2.3. Influence of ESG on Market Synchronization

In the current context of sustainable investing, responsible investors seek to either
avoid or reduce exposure to investments that pose more significant ESG risks influencing
companies to make them more ESG-friendly, and thus generate more positive benefits for
society (See more details in Appendix B). Moreover, investors are willing to incorporate
ESG considerations into the investment decision-making process for financial reasons.
For instance, “doing well by doing good” is based on the expectation that ESG investing
will enhance performance [13]. Accordingly, issuing companies, investment funds, and
financial intermediaries must comply with information declaration protocols regarding
their environmental, social, and corporate governance impact (ESG disclosure), giving
investors and the financial community information to include in their decision processes.

Multiple factors explain the interest in sustainable investments. Ref. [50] indicates
motives related to investment performance, issuers’ firm scandals, globalization, environ-
mental changes, shifts in public opinion, and political climate. One effect of the above is
that one out of four dollars managed by institutional investors in the USA is invested in So-
cially Responsible Investment (SRI) funds, while in Europe, it is one out of two dollars [51].
Nowadays, the trend to invest in SRI funds is rising despite evidence indicating they are
equal to or less profitable than conventional funds [52–54]. Nevertheless, SRI has less risk,
a critical element that would explain the high motivation to invest in this kind of asset [55].

A relevant aspect of ESG assets relates to their response to economic and financial
shocks. For instance, there is evidence of additional benefits to the risk–return ratio for SRI
funds because SRI funds have lower risk than conventional investments. Ref. [56] shows
that SRI funds have a better resilience against shock events by observing that the stability
of the structure of the SRI fund network varies less in the face of a highly negative event.
Similarly, ref. [57] finds that SRI investments vary less in market fluctuations, while [58]
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states that SRI investments have lower beta and standard deviation than conventional
investments, and refs. [59,60] point out that during times of crisis, SRIs perform better,
demonstrating that these funds can protect against periods of turbulence while sacrificing
profitability in periods of calm.

Consequently, ESG assets are better prepared to tackle market risks and consider
synchronization as an additional market risk, showing better performance during high
uncertainty and volatility periods. Regarding this idea, ref. [61] finds that high-ESG funds
perform better after crises. Similarly, analyzing stock indices, ref. [62] demonstrates that
highly sustainable stock indices can be included in portfolios to increase diversification
and risk hedging.

3. Materials and Methods

We used daily closing prices provided by Bloomberg from January 2012 through
December 2021 for the 100 largest market cap ETFs worldwide, equivalent to 80% of total
assets under management for the ETF industry. Similarly, we obtained the ESG score for
each ETF from REFINITIV. Additionally, we included the CBOE VIX index to represent the
change in the stock market implied volatility.

Finally, we classified the ETFs around their ESG score in four equally numbered
quartiles q. For this purpose, we ordered our 100 ETFs from the highest ESG score ETF to
the lowest ESG score ETF, considering the year 2021 score classification. The ESG score is
calculated once a year; in this sense, our base premise for this study is that the ESG score
ETF is fixed around time.

3.1. Measuring Stock Market Synchronization with MSTL

We compute a minimum spanning tree (MST) to measure synchronization follow-
ing [34] for each quartile q in the month t. The method is described below. Let N be the
number of ETFs and Pi,t the price at time t of ETF i, 1 ≥ i ≥ N. Then, ri,t the log-return at
time t of ETF i, is:

ri,t = log Pi,t − log Pi,t−1 (1)

For each pair i, j of ETFs, we estimate their correlation, using:

ρi,j =

〈
rirj
〉
− 〈ri〉

〈
rj
〉√(〈

r2
i
〉
− 〈ri〉2

)(
〈r2

j 〉 −
〈
rj
〉

2
) (2)

Given a number of N ETFs, there are N(N − 1)/2 correlations of returns between
pairs of ETFs. The 〈∗〉 operator, indicates the average of the quantity on a given month.
The ρij values of the correlation matrix are transformed to a distance metric, such that

dij = (2
(
1− ρij

)
)

1/2, which represents the distance between ETF i and j. Thus, a correlation
ρij = −1 indicates a maximum distance of dij = 2, while ρij = 1 indicates a minimum
distance of dij = 0 [37]. The resulting asset distance matrix is part of the input to find a
minimum distance asset tree. This tree is a simplified version of the complete correlation
network that only has N − 1 edges as opposed to the original N(N − 1)/2 edges. This
minimum distance tree is equivalent to solving the shortest path problem which can be
solved with Kruskal’s algorithm [63].

In this way, MST reduces the information by connecting all nodes with N(N − 1)/2
edges to a tree with (N − 1) edges. Then, the sum of the edges of the resulting tree Tt

calculated for each month t forms a time series. We define the normalized length of the
MST (MSTL) as:

L(t) =
(

1
N − 1

)
∑dt

ij∈Tt dt
ij (3)

Then, for every month, we estimate the variation in the MSTL as ∆L(t) = lnL(t)−
lnL (t− 1) for work with a stationary time series.
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3.2. Measuring the Shape of the Network

To characterize the minimum distance asset tree obtained in each of the respective
time periods, we use graph diameter and degree measure that account for the topological
structure of the asset tree.

We define the graph tree as G = (V, E), V and E being the set of vertices and weighted
edges of the network, respectively, with adjacency matrix A, then ki = ∑j ai,j is the number
of edges which are adjacent to the node vi ∈ V, called the degree of node vi. All nodes in G,
such as ki = 1, are called leaves of the tree. The diameter D of the tree G is defined as the
maximum distance between a pair of nodes. It is worth noting that since the set of edges
E represents distances, in this case, the diameter of the tree must consider the weights of
the edges, which are not the same as the maximum number of edges to connect a pair of
nodes. The number of leaves and the diameter are two useful measures to characterize
the minimum asset tree. As indicated by [64], trees with a low number of leaves but high
diameter usually have a row shape of connected nodes, while trees with a high number of
leaves and low diameters usually resemble star-like graphs. In the first case, information
can be thought of as flowing through the network in a sequential manner, following a single
path, while in the second case, information is concentrated in a few nodes and disseminated
to the rest of the network from these high-degree nodes.

Finally, we estimate the strength for each node as a vertex vi defined as si = ∑i 6=j dij,
i.e., the sum of the connectivity weights of the edges that connect with node vi. In our case,
a node with a low strength value relative to another indicates that the node is closer to the
others or tends to move synchronously with the rest of the nodes to which it is connected.
Then, for each month t, we collapse this measure in a mean and a standard deviation within
each quartile q.

Our methodology, based on minimum spanning trees (MSTs), is widely validated and
extended in financial studies because the network approach in this type of study allows
us to consider the multiple interrelationships between actors in a complex system. More
specifically, the financial system with N components (indexes or shares of a company)
exists for each element with at least N − 1 interactions. This method means there are total
N(N − 1)/2 interactions. Consequently, to simplify the network complexity, an MST is
used as a filter to reduce the number of connections between the system elements, leaving
a graph with only N − 1 edges and, simultaneously, leaving the most relevant connections
at each node. This approach has been used intensively in other studies, even outside the
financial field.

3.3. Econometrics Models and Evaluation

We use the variation of the MSTL, the diameter, and the mean centrality described in
the previous section to test the effect of a change in the stock market implied volatility on
the ETFs’ synchronization. For this aim, we use the t-statistic associated with the coefficient
of VIX, considering HAC standard errors as suggested in [65,66]. For covariance stationary
processes, the central limit theorem requires a proper estimation of the long-run variance.

Our model specification is the following:

VMSTLq,t = α + βqVVIXt + ∑3
n=1 γt−nVMSTLq,t−n + eq (4)

where VMSTL is the change in the synchronization of the qth quartile, for all quartiles
q ∈ {1, 2, 3, 4} in the month t, and VVIX is the change in the CBOE VIX index in the
month t. n represents the number of lags of the VMSTL for each quartile q.

Specifically, we compare the coefficients βq for each quartile (See Equation (4)) to test
the sensibility of synchronization confronting volatility changes. We hypothesize that β4
(quartile with ETFs with lower ESG scores) is more significant than the β1 (ETFs with higher
ESG scores). This means that, during increased market volatility episodes, correlation
networks of ETFs with higher levels of ESG scores present a lower synchronization level
compared with correlation networks of ETFs with lower levels of ESG scores.
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We apply models using HAC standard errors [65,66] (ref. [65] proposes a Barlett kernel
for a positive definite variance matrix, and ref. [66] considers an automatic selection for the
lag truncator parameter) because the prices of financial assets are unit root processes since
their first difference (log-returns) exhibits covariance stationary.

Considering that we are dealing with time series, the data uncertainty may be man-
ifested not only by the eventual appearance of “rare events” but also by problems of
misspecification of such models.

In the first case, there are situations in which an event has high consequences (e.g., an
out-of-range return with high consequences or a disproportionately negative return) with
little or no historical records available to predict it. Thus, such surprise events could bias
our models because they are based primarily on data that are not rare events. However,
in our data sample, it is clear that we have some of these rare events that correspond to
financial crises that led to market crises and unusual behavior.

In the second case, a miss-specification of our models can occur in the time-series
context since we use a finite sample, and consequently, the time series starts from initial
conditions. So, we assumed that the process had reached a steady state, so the mean
and variance of the dependent variable no longer change over time. This strategy, of
course, is a matter of empirical verification that must be carried out because if the process
under analysis does not contemplate stationarity, the estimated models will have a bias in
parameters and variances because the data are no longer independent. For this case, we
have implemented a series of Dickey–Fuller and Phillips–Perron tests of stationarity which
indicate that the time series are stationaries (result upon request).

Finally, we added a robustness test using regression with breaks to manage the data
uncertainty issues. Given the instabilities in the predictive performance of forecasting
models reporting in the literature, we develop a multiple unknown break regression
analysis between changes in the VIX and the corresponding variation on the MSTL. The
rationale of this exercise is that many papers have data uncertainty problems with sporadic
and unstable parameters, appearing as “pockets of predictability” [67]. For this reason, we
explore the possibility of multiple unknown breaks in the parameters in Equation (4).

We consider a maximum of five breaks; hence, we allow for a maximum of six different
regimes. We determine each regime breakpoint, namely, T1, T2, T3, T4, and T5 using the
UDmax test of [68]. Thinking that we have five breaks, we say that the regime 1 is between
T0 < T1; regime 2 is between T1 < T2; regime 3 is between T2 < T3; regime 4 is between
T3 < T4; regime 5 is between T4 < T5; and regime 6 is between T5 < T6.

3.4. Spillovers Analysis

Following the last stage of our empirical strategy, we study how the mutual interde-
pendence between the VIX and the changes in the MSTL of each ESG network dynamically
evolve. For this, we apply an impulse response function exercise and a forecast error
variance decomposition [69]. The idea is to gain a broad view of this interconnectedness
phenomenon and quantify its mutual influence over time. The IRF function is:

vmstl_Q1t
vmstl_Q2t
vmstl_Q3t
vmstl_Q4t

 = ∑K
k=1 Ak


vmstl_Q1t−k
vmstl_Q2t−k
vmstl_Q3t−k
vmstl_Q4t−k

+ Bl ∗VIXt +


εvrmstl_Q1t
εvrmstl_Q2t
εvrmstl_Q3t
εvrmstl_Q4t

 (5)

This model captures the length of the synchronization episode, incorporating the
response of the variation on the MSTL of each ETF network after a shock of one standard
deviation in the VIX.

We are interested in observing the contribution of VIX in the MSTL for each ESG
quarter. For this, we developed a simple VAR model by measuring the directional spillovers
in a generalized VAR framework. Following [70], we estimate shares of forecast error
variation in all quartiles, including VIX due to shock appearance. The intuition behind this
is that the forecast error variance of variable i is decomposed into parts attributed to the
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participation of various variables in the system. For example, we decompose the forecast
error variance of VMSTL Q1 into parts attributed to VMSTL Q2, VMSTL Q3, VMSTL Q4,
and VIX. We denote by dH

i,j the ij–th H-step variance decomposition component; that is, the
fraction of variable i’ s H-step forecast error variance due to shocks in variable j.

4. Results
4.1. Univariate Results

We use VMSTL to capture the changes in the synchronization within each network
according to their ESG score. In this sense, when the network is extending (contract-
ing), the VMSTL is positive (negative), since synchronization within each quartile is
diminishing (increasing).

Table 1, Panel A shows a lower synchronization behavior among the ETF quartiles
with the highest ESG score (Q3 and Q4) versus the ESG quartiles with the lowest ESG
score (Q1 and Q2). The analysis confirms statistically significant differences at 1% between
Q3/Q4 compared with Q1/Q2, indicating that the group of ETFs with higher ESG scores
has a greater MSTL, consequently exhibiting less synchronization of returns. These MSTL
differences are consistent with the diameter measure of each network. As Panel B indicates,
the quartiles with the lowest ESG score (Q1 and Q2) present a smaller diameter than the
ETFs with the highest ESG score (Q3 and Q4), indicating larger synchronization within the
ETFs with the lowest ESG scores.

Table 1. ETFs Network measures by ESG quartiles.

Q2 Q3 Q4

Panel A: MSTL

Q1
All period 0.939 *** −0.875 *** −0.214 **

2017M01–2018M01 1.176 *** −1.441 *** −0.835 ***
2020M03–2021M03 0.977 *** −0.509 ** 0.271 *

Q2
All period −1.815 *** −1.154 ***

2017M01–2018M01 −2.620 *** −2.011 ***
2020M03–2021M03 −1.487 *** −0.705 ***

Q3
All period 0.661 ***

2017M01–2018M01 0.608 ***
2020M03–2021M03 0.781 ***

Panel B: Diameter

Q1
All period 0.144 *** −0.264 *** −0.023

2017M01–2018M01 0.093 −0.689 *** −0.575 **
2020M03–2021M03 0.449 ** 0.147 0.361 **

Q2
All period −0.408 *** −0.167 ***

2017M01–2018M01 −0.783 ** −0.669 **
2020M03–2021M03 −0.302 ** −0.087

Q3
All period 0.241 ***

2017M01–2018M01 0.114
2020M03–2021M03 0.213 *
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Table 1. Cont.

Q2 Q3 Q4

Panel C: Mean Strength

Q1
All period 0.039 *** −0.036 *** −0.009 ***

2017M01–2018M01 0.049 *** −0.060 *** −0.025 ***
2020M03–2021M03 0.041 *** −0.021 ** 0.011 *

Q2
All period −0.075 *** −0.048 ***

2017M01–2018M01 −0.109 *** −0.082 ***
2020M03–2021M03 −0.061 *** −0.029 ***

Q3
All period 0.028 ***

2017M01–2018M01 0.025 ***
2020M03–2021M03 0.032 ***

Note: ***, **, and * represent statistical significance levels of 1%, 5%, and 10%, respectively. For this analysis, we
applied a paired t test for related samples. This table exhibits the mean differences among the row quartiles and
the column quartiles. Panel A shows the minimum spanning tree length (MSTL); Panel B shows the diameter;
and Panel C shows mean strength. Source: authors’ elaboration.

Additionally, to have a sense of the ETF network’s shape, we study the strength of
each ETF network within its quartile (see Table 1, Panel C). As the literature states, higher
(lower) strength networks are associated with star-like (worm-like) shapes. Accordingly,
several nodes with high strength act as a source of contagion (hub nodes) rather than
receiving the contagion effect from other nodes. From this perspective, a more star-shaped
network would transmit a shock faster than a worm-shaped one. As Panel C exhibits, there
is evidence of higher strength among the group with higher ESG scores compared with the
group with lower ESG scores. These results would indicate that Q3/Q4 tend to be more
star-shaped, consequently, they possess a higher risk of contagion than Q1/Q2.

As Figure 1 and Table 1 show, the networks have different topologies during periods
of high/low volatility episodes. For instance, tree lengths tend to be greater (smaller)
during low (high) volatility periods. In line with previous studies [8,71], the correlation
of stocks during financial shock episodes presumably increases due to self-organized
crowding behavior [72]. Similarly, from a topological viewpoint, the same is valid for the
diameter and mean strength due to the increase in the length of each edge linking the
ETFs belonging to each network. Finally, as previous results indicate, the behavior of the
different networks is dynamic through time, changing their topological characteristics as
stock market conditions vary.

In addition, to appreciate the topology of the ETF networks and illustrate their differ-
ences, we built two sets of MST ETF networks for each of the four previous quartiles based
on their ESG scores. Figure 1A represents the network structures considering a period of
mild uncertainty and volatility (The VIX index for the period January 2013 to April 2021
exhibits a range of variation characterized by a mean equal to 16.87 units, a percentile 25
of 12.71 units, a percentile 50 of 14.52 units, and a percentile 75 of 18.74 units). Similarly,
Figure 1B depicts the networks for each quartile considering a period of great uncertainty
and volatility when the VIX index had a value of 53.43 units.

Finally, to deepen the understanding of the relationship between volatility and turmoil
episodes and their effect on the return’s synchronization, particularly on our ETF networks,
we first estimate the correlation between each quartile ETF-MSTL (Figure 2). Second, we
study the relationship between the VIX and the MSTL-Q1 and MSTL-Q4 (Figure 3).

As both figures display, there is a negative relationship between the four quartiles
of ETF and the VIX. In other words, when the VIX rises due to a shock, the MST length
belonging to each quartile shrinks. The same occurs to the MSTL grouping the whole
sample of ETFs. Moreover, it is possible to appreciate differences in the behavior of the
lowest (Q1) vs. highest (Q4) ESG ETFs.

In summary, the univariate analysis lets us conclude that the turmoil episodes captured
by changes in the VIX influence the shape and structure of each ETF network and its
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synchronization level. Likewise, the evidence shows that the topology of each network also
changes when the implied volatility of the market varies.
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Figure 1. Minimum Spanning Trees (MST) for the ETF industry. This figure shows the resulting
MST for two different periods. (A) shows a month with higher implied volatility. (B) shows a month
with lesser implied volatility. We group the ETFs in four quartiles according to their ESG score. Quar-
tile 1 has the lowest ESG score; meanwhile, Quartile 4 has the highest. (A) Normal period—October
2017—VIX level: 9.49; (B) COVID-19 outbreak period—March 2020—VIX level: 53.43. Source: au-
thors’ elaboration.
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4.2. Multivariate Results

In this section, we compare the coefficients βq for each quartile (See Equation (4)) to
test the sensibility of synchronization confronting volatility changes. We hypothesize that
the correlations network synchronization in the ETFs quartile with lower ESG scores is
more sensible than in the ETFs quartile with higher ESG scores confronting VIX variations.
In other words, we are interested in observing that β1 < β4. This means that, during
increased market volatility episodes, the correlation networks of ETFs with higher levels of
ESG score present a lower synchronization level compared with the correlation networks
of ETFs with lower levels of ESG score.

Our results are in line with the hypothesis. Table 2, column 1 shows that Q1 (ETFs
quartile with lower ESG scores) is the most synchronized during an increase in the VIX
compared with the rest of the quartiles. Effectively, at an aggregate level, there is a negative
relationship between the VIX and the synchronization of the ETF network (Table 2, column
5). Nevertheless, the reaction for each ETF network is dissimilar. Therefore, the correlations
network synchronization in the ETFs quartile with lower ESG scores is more sensible than
in the ETFs quartile with higher ESG scores.
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Table 2. MSTL and Diameter models.

Panel A Panel B

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Q1
(Lowest ESG) Q2 Q3

Q4
(Highest

ESG)
All Sample Q1

(Lowest ESG) Q2 Q3
Q4

(Highest
ESG)

All Sample

VMSTL DIAMETER

VIX −0.100 *** −0.011 −0.011 0.057 * −0.511 *** −0.411 ** −0.068 −0.269 * −0.207 −1.179 ***
(0.035) (0.021) (0.021) (0.033) (0.075) (0.163) (0.183) (0.152) (0.157) (0.311)

Z(−1) −0.083 *** −0.094 *** −0.094 *** −0.041 −0.431 *** 0.125 −0.062 0.031 0.121 ** 0.278 ***
(0.027) (0.014) (0.014) (0.036) (0.065) (0.060) (0.077) (0.070) (0.050) (0.100)

Z(−2) −0.035 −0.024 −0.024 −0.048 −0.170 ** 0.039 0.079 0.099 * 0.094 −0.010
(0.022) (0.015) (0.015) (0.044) (0.069) (0.063) (0.075) (0.058) (0.058) (0.089)

Z(−3) −0.037 ** −0.024 ** −0.024 ** 0.001 0.012 −0.114 ** −0.082 0.074 −0.029 0.148 **
(0.017) (0.010) (0.010) (0.029) (0.070) (0.051) (0.066) (0.065) (0.057) (0.070)

VMSTL_ALL 0.893 *** 0.905 *** 0.905 *** 1.030 ***
(0.033) (0.014) (0.014) (0.036)

DIAMETER_ALL 0.471 *** 0.385 *** 0.465 *** 0.563 ***
(0.044) (0.031) (0.069) (0.079)

C 0.001 −0.001 −0.001 0.000 0.000 0.419 * 0.930 *** 0.272 −0.320 2.544 ***
(0.002) (0.001) (0.001) (0.004) (0.003) (0.249) (0.328) (0.223) (0.300) (0.636)

Adj R2 0.905 0.913 0.913 0.930 0.375 0.517 0.508 0.576 0.675 0.088
F-stat 198.167 218.753 218.753 278.451 16.575 23.444 22.642 29.485 44.620 3.539
Prob(F-stat) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010

Note: Panel A shows the regression for the change in the MSTL (VMSTL_q) for each quartile q using Newey–West standard errors; Panel B shows the regression for the change in the
Diameter (Diameter_q) for each quartile q using Newey–West standard errors; VIX is the change in the VIX in the month t; Z is the change in the MSTL (Diameter in Panel B) for each
quartile q with one, two, and three lags, respectively; VMSTL_ALL is the change in the MSTL for all sample; DIAMETER_ALL is the change in the diameter for all sample; and standard
errors in parentheses. * p < 0.1, ** p < 0.05, and *** p < 0.01. Source: authors’ elaboration.
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Additionally, the multivariate analysis indicates that the synchronization phenom-
ena throughout the quartiles of ESG ETF networks are not pervasive. Namely, we do
not observe the synchronization phenomenon among the quartiles with the higher ESG
scores. Moreover, as Table 2, columns 3–4 indicate, the effect of a change in the VIX is not
present among the quartiles with higher ESG scores, suggesting that ETFs with a higher
ESG level offer a greater synchronization risk protection compared with ETFs with a low
ESG score. For instance, results for the Q4 (column 5) network show that a higher VIX
provokes a less synchronized network since the network extends. Hence, during periods
of financial shocks, both types of ETFs would exhibit different behaviors in terms of their
risk synchronization exposure. Consequently, ETFs with lower ESG ratings would be less
effective as a diversification tool than those with higher ESG scores.

We complement our study by analyzing the diameter for the whole ETF sample and
each quartile. The diameter is representative of how extended or contracted a network
is. A network with a smaller diameter is a contracted network, which indicates a more
prone network to transmit and spread systemic shocks as synchronization. On the contrary,
a higher diameter indicates an extended network, representing a network with lessened
conditions for an economic and financial shock to be contagious. Table 2, columns 6–10
show that an increase in the VIX decreases the diameter, with statistical significance, for the
case of the network of Q1. This evidence shows that the diameter of the ETF network with
lower ESG ratings decreases in the face of an increase in volatility in the stock market.

All in all, we observe that the Q1 correlations network is more sensitive to a volatility
increase, showing a more significant risk of contagion concerning the other quartiles.

4.3. Robustness Analysis

Following our empirical strategy, to check that previous evidence is independent of
the MSTL method, we apply tests to study the robustness of the results. First, we use the
Planar Maximum Filtered Graph (PMFGL) for the ESG ETF fund network instead of MSTL
as a synchronization measure (see Table 3, columns 6–10). The PMFG’s algorithm admits
cycles; therefore, despite being an incomplete network, it contains more information than
the MSTL. As Table 3 depicts, our robustness analysis confirms the effect of the implied
volatility of the stock market on the whole network of ESG ETF funds. Specifically, and in
line with the hypothesis, we observe that lower ESG quartile Q1 scores suffer a significant
degree of synchronization compared with those with greater rankings.

Additionally, as equity market regime changes are volatility-dependent [71], we study
the effects of changes in the VIX on the shape of ESG ETFs’ networks. For this, we use
measures regarding the mean centrality of each network. As the literature states, an increase
in the average strength of the nodes would indicate that the network takes a star shape,
which is associated with a higher risk of contagion since the nodes are more connected
on average. On the contrary, a worm shape (less average strength) has a lower risk of
contagion. Table 3, columns 1–5 show that an increase in the implied volatility of the
stock market negatively affects the mean strength of the ESG ETF funds’ global network.
Likewise, an increase in the VIX generates a decrease in the mean strength of the ETF
subnetwork with the lowest ESG ranking (Q1). Similarly, we also observe that an increase
in the mean strength of the whole network of ESG ETF funds generates a rise in the mean
strength of the ETF subnetworks.

In summary, our multivariate analysis indicates that changes in the implied volatility
of stock markets, represented by the VIX, affect the correlation network structure of the
whole ESG ETF funds and their synchronization behavior. Specifically, we find a more
negative relationship between the VIX and the synchronization of the Q1 ETF network,
the subnetwork of funds with the lower ESG rating. This group synchronizes most under
volatility shocks. Concerning the structure of the networks, our evidence indicates that
an increment in the implied volatility of the stock market diminishes the diameter and
mean strength of the whole network of ETFs, particularly the subnetworks of ETFs with
the lowest ESG ratings.
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Table 3. Strength and PMFGL models.

Panel A Panel B

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Q1 (Lowest
ESG) Q2 Q3 Q4 (Highest

ESG) All Sample Q1 (Lowest
ESG) Q2 Q3 Q4 (Highest

ESG) All Sample

STRENGTH VPMFGL

VIX −0.785 ** −0.086 −0.111 0.375 −18.385 *** −0.143 *** −0.042 −0.040 0.051 * −0.525 ***
(0.322) (0.260) (0.228) (0.278) (3.560) (0.029) (0.055) (0.030) (0.028) (0.044)

Z(−1) 0.054 * −0.013 −0.017 0.058 0.406 *** −0.093 *** −0.087 *** −0.068 ** −0.039 −0.425 ***
(0.027) (0.038) (0.023) (0.037) (0.091) (0.023) (0.022) (0.031) (0.042) (0.039)

Z(−2) 0.006 −0.016 0.038 0.016 0.102 −0.021 −0.010 −0.008 −0.034 −0.178 ***
(0.019) (0.029) (0.027) (0.030) (0.072) (0.025 (0.027) (0.030) (0.050) (0.038)

Z(−3) 0.004 −0.020 0.018 0.067 0.059 −0.033 * −0.022 −0.011 −0.001 0.014
(0.022) (0.031) (0.025) (0.020) (0.089) (0.019) (0.019) (0.030) (0.029) (0.038)

STRENGTH_ALL 0.224 *** 0.183 *** 0.218 *** 0.233 ***
(0.011) (0.008) (0.007) (0.013)

VPMFGL_ALL 0.875 *** 0.928 *** 0.954 *** 1.037 ***
(0.032) (0.040) (0.031) (0.044)

C −0.035 0.719 0.268 −1.589 20.388 *** 0.001 0.000 0.002 0.000 0.000
(0.667) (0.468) (0.549) (0.620) (2.680) (0.003) (0.002) (0.003) (0.004) (0.002)

Adjusted
R-squared 0.916 0.913 0.928 0.894 0.225 0.906 0.916 0.948 0.923 0.376

F-statistic 230.620 222.303 272.771 177.606 8.637 200.814 229.260 380.946 250.408 16.666
Prob(F-
statistic) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: Panel A shows the regression for the change in the STRENGTH for each quartile q using Newey–West standard errors; Panel B shows the regression for the change in the PMFGL
for each quartile q using Newey–West standard errors; VIX is the change in the VIX in the month t; Z is the change in the STRENGTH (PMFGL in Panel B) for each quartile q with one,
two, and three lags, respectively; STRENGTH_ALL is the change in the STRENGTH for all sample; PMFGL_ALL is the change in the PMFGL for all sample; and standard errors in
parentheses. * p < 0.1, ** p < 0.05, and *** p < 0.01. Source: authors’ elaboration.
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4.4. Instabilities and Connectedness Analysis

Table 4, columns 1 to 4 show model estimation results for the analysis of time de-
pendence of parameters considering the four quartiles of ESG ETF networks. We observe
that in four of the six regimes, there is a negative relationship between the VIX and the
variation of the MSTL, this relationship being concentrated on those networks with less
ESG score. However, for the case of the highest ESG network, evidence indicates a positive
relationship, suggesting that a rise in VIX tends to expand the Q4 network, favoring a
lessened synchronization behavior of the ESG funds within the network.

Table 4. Time dependence of parameters.

(1) (2) (3) (4)

Q1 (Lowest ESG) Q2 Q3 Q4 (Highest ESG)

VMSTL

Regime 1

VIX −0.087 *** 0.114 0.200 ** −0.013
(0.017) (0.118) (0.076) 0.077

Time period (T1) 2013M02–2015M08 2013M02–2015M06 2013M02–2015M05 2013M02–2015M01

Regime 2

VIX 0.031 −0.077 *** 0.048 −0.049
(0.028) (0.024) (0.039) 0.099

Time period (T2) 2015M09–2016M11 2015M07–2016M11 2015M06–2016M10 2015M02–2016M04

Regime 3

VIX −0.519 *** −0.198 * −0.156 *** 0.14
(0.053) (0.103) (0.052) 0.131

Time period (T3) 2016M12–2018M05 2016M12–2018M10 2016M11–2019M01 2016M05–2017M07

Regime 4

VIX −0.09 0.118 * −0.039 0.445 ***
(0.069) (0.060) (0.056) 0.081

Time period (T4) 2018M06–2019M08 2018M11–2021M10 2019M02–2021M10 2017M08–2018M10

Regime 5

VIX −0.142 *** 0.105
(0.049) 0.093

Time period (T5) 2019M09–2021M10 2018M11–2020M01

Regime 6

VIX 0.005
0.039

Time period (T6) 2020M02–2021M10

Adj R2 0.910 0.927 0.958 0.947
F-statis 37.402 58.621 103.625 54.516

Prob(F-stats) 0.000 0.000 0.000 0.000

Note: This table shows the regressions for the change in the MSTL for each quartile q under different time
periods; VIX is the change in the VIX in the month t; regressions included the same variables as Table 2 but
does not report; and Newey–West standard errors in parentheses. * p < 0.1, ** p < 0.05, and *** p < 0.01. Source:
authors’ elaboration.

In summary, these results support the evidence reported in Tables 2 and 3, indicating
that our results still show a negative relationship between the VIX and the synchroniza-
tion of the returns of ESG funds through different time regimes, even incorporating the
instability of the parameters observed in the financial markets.

To study the mutual interdependence between the VIX and the changes in the MSTL
of each ESG network, we applied an impulse response function exercise and a forecast
error variance decomposition. We aim to observe the interconnectedness phenomenon
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and quantify their mutual influence over time. Figure 4 shows the impulse–response
functions for each quartile network. These figures show that the MSTL of each network
negatively reacts to VIX innovations, the network with the lowest ESG score, the one that
synchronized more.

Finally, Table 5 exhibits the variance decomposition that results from the contribution
to the variance of the h-month-ahead synchronization forecast error between each MSTL
network and VIX and vice versa. Panel A exhibits 1-month-ahead forecasts error variance
decomposition for the MSTL, and Panel B shows the same analysis for the PMFG. On the
one hand, we can observe for both synchronization measures that the networks with the
lowest (highest) ESG scores contribute more (less) to the rest of the networks in terms of
synchronization spillovers and to the VIX. However, on the other hand, the evidence shows
that the networks with the highest (lowest) ESG scores receive less (more) synchronization
spillovers from the VIX.

Table 5. Mutual spillovers analysis.

Panel A–VMSTL Q1 Q2 Q3 Q4 VIX From Others

Q1 25.5 21.9 21.3 19.5 11.8 74.5
Q2 22.0 25.7 22.5 20.1 9.6 74.3
Q3 21.1 22.2 25.3 21.8 9.5 74.7
Q4 20.4 21.0 23.1 26.8 8.7 73.2
VIX 18.2 14.7 14.8 12.8 39.4 60.6
Contribution to others 81.8 79.8 81.7 74.3 39.7 357.3
Contribution
including own 107.3 105.5 107.0 101.1 79.1 71.5%

Panel B–VPMFG Q1 Q2 Q3 Q4 VIX From Others

Q1 25.3 22.6 21.4 19.7 11.0 74.7
Q2 22.2 25.6 22.2 20.8 9.2 74.4
Q3 21.1 22.1 25.2 22.5 9.1 74.8
Q4 20.2 21.3 22.9 27.4 8.2 72.6
VIX 18.3 15.4 15.5 12.4 38.4 61.6
Contribution to others 81.9 81.4 81.9 75.5 37.4 358.1
Contribution
including own 107.2 107.0 107.2 102.9 75.8 71.6%

Note: Panel A summarizes the forecast error variance decomposition results as percentage points among VMSTL
of all quartiles and VIX. Panel B summarizes the forecast error variance decomposition results as percentage
points among VPMFGL of all quartiles and VIX. The variance decomposition is based on the spillover analysis.
Source: authors’ elaboration.

As a final remark, it is worth noting that the previous analysis sheds light regarding the
synchronization phenomenon regarding ESG ETF and its relationship with financial shocks
captured by the VIX. In general, this relationship is negative for the whole network of ESG
ETFs, but it is more intense among the ETFs with poorer ESG scores. Additionally, the
length of the synchronization episodes tends to be similar for the whole network of funds.
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Figure 4. Impulse response function analysis. This figure shows the response to Cholesky One
Standard Deviation innovations ± 2 analytic asymptotic Standard Errors to MSTL_Q4 (up) and
MSTL_Q1 (down), respectively. Blue line represents the answer to a MSTL_Q1 innovation. Orange
line shows the answer to a MSTL_Q4 innovation. Finally, green line represents the answer to a VIX
innovation. Source: authors’ elaboration.

5. Discussion

The results show that high ESG ETFs are synchronized less than low ESG ones under
rising expected market volatility. This evidence is consistent with the idea that the highest
ESG rating mitigates the impact of unexpected change in the implied volatility on the
systemic stock market risk.

Our findings align with the financial literature that studies the nexus between ESG
score and financial performance, especially with financial risk level (see more details in
Appendix B). Using network analysis, ref. [51] compares funds that are highly ranked in
ESG aspects with those with poor ESG compliance. They indicate that SRI funds have a
better resilience against shocks by observing that the stability of the structure of the SRI
fund network varies less in the face of a higher adverse event. Similarly, ref. [60] studies the
risk-adjusted financial performance of sustainability funds, finding a better performance
than other thematic funds in high volatility periods.

In addition to all this evidence, ref. [59] investigated the performance of SRI funds
during crisis, finding that they protect investors from downside risk. Previously, ref. [57]
examined stock ESG scores, their returns, volatility, and risk-adjusted returns in the post-
2008 financial crisis era. Their results show a negative relationship between ESG and
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volatility. The authors observed that a high ESG rating and low volatility positively impact
stock returns, given the well-documented low-volatility anomaly (outperformance of low-
volatility stocks).

We propose that our results could be due to three explanations present in the financial
literature. First, investors would adjust their expectations of future cash flows and discount
rates to a lesser extent against risks in assets with high ESG. This idea means that investors
tend to hold onto high-ESG investments and sell low-ESG ones when faced with increases
in market volatility. This behavior occurs because investors believe that assets with high
ESG can better confront the risks that underlie an increase in implied volatility, commonly
related to economic and financial crises [60]. Consequently, investors facing a shock adjust
their expectations of future cash flows and the discount rate on an asset to a lesser extent,
with which they tend to maintain their positions over time.

The second explanation is the affect heuristic. Refs. [20,73] indicate that feelings can
give way to a more reasoned analysis of decisions and guide subsequent judgment and
decision making. Ref. [9] found a strong relationship between the Globe Ranking for the
sustainability of mutual funds and expected future returns. A strong negative relationship
between the globe’s ranking and expected riskiness would suggest a strong role for mutual
funds’ emotions when managing investments. Along the same lines, this effect is related
to the halo effect, where impressions of an area affect the overall evaluation [21]. Thus,
the positive evaluation associated with the ESG score of a financial asset could influence a
positive evaluation regarding its behavior in difficult times such as financial, economic, or
any other shock or crisis that tends to raise the implied volatility of the financial markets.

Finally, a third reason relates to the influence of non-pecuniary motives. In this
theory, investors consider environmental and social factors when making investment
decisions, making them less reactive to selling high-ESG investments in times of financial
instability than low-ESG investments. This phenomenon refers to how other non-economic
motivations could influence an investor’s self-perception of a financial asset [22,23] and
prosocial decision-making processes [24]. For instance, ref. [25] shows that an investor can
experience altruism, which in our study can be experiencing satisfaction and well-being
when investing in high-ESG ETFs, feeling that they are responsible and benefiting society by
selecting high-ESG assets. Additionally, refs. [26,27] point out that these altruistic rationales
can come from motives and social pressures, such as the desire to impress others or avoid
scorn or negative social reaction.

6. Conclusions

The main result of our article is that there are differences in correlation behavior among
ETFs according to their ESG score. Specifically, the high-ESG ETFs quartile is less sensitive
to variations in global financial risk than the low-ESG ETFs quartile. In contrast, we find
that the synchronization of low-ESG ETFs rises during an increase in the implied volatility
of the stock market, while the synchronization of high-ESG ETFs does not react to the
same event.

Synchronization in financial assets is a fundamental component of asset pricing theory
and the behavior of capital assets. It is particularly relevant in stock markets since shocks
and contagion events generate market volatility and stock correlation. The co-movement
is a consequence of changes in market information and risk appetite that move the prices
together [74].

In the presence of rational investors and a frictionless market, the price of a financial
asset would correspond to the rational expectation of its future cash flows, discounted
at a rate that adequately reflects the risk associated with those cash flows. Consequently,
co-movement in the returns of risky assets, such as stocks of a specific economic sector,
would result from the following factors: news correlated with the level of future cash flows
or news correlated with the risk of those cash flows. Similarly, it is probable to observe
co-movement in returns at the level of all risky assets in the economy due to news regarding
future variations in interest rates or changes in investors’ overall level of risk aversion [75].
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Study synchronization is essential for several reasons: (1) synchronization limits diver-
sification opportunities from the investors’ perspective since more synchronized markets
and assets imply more extraordinary diversification efforts and costs; (2) from a regula-
tory perspective, market stability is related to the probability of contagion from economic
and financial shocks since a more synchronized market generates the conditions for a
shock to be transmitted and spread more quickly; (3) and synchronization is dynamic over
time, implying diversification opportunities for investors and policymakers’ supervisory
task variations.

More importantly, this research shows that ESG ETFs returns’ synchronization varies
over time, reacting differently to volatility shock according to their ESG ranking. This
crucial result suggests new avenues for research that will allow practitioners, investors, and
regulators to deepen their understanding of the ESG impact on financial assets. A direct
extension would be the construction of indicators to efficiently monitor this new dimension
of systemic risk among this broad asset class.

This research has some limitations. First, we eliminate the idiosyncratic equities risk
when working with ETFs, so we only focus on market risk and general market factors in
our study of synchronization. Second, our network measurements are monthly frequency,
which does not allow us to capture the immediate effect of volatility shocks in greater
depth on a daily or weekly frequency. Therefore, the generalization of our results should
be circumscribed to the behavior of the monthly equity ESG ETF asset class. Third, it is
possible that the actual category label associated with ESG assets (because sustainable
investments are living a worldwide boom) would change in the future; therefore, the main
findings of this work could vary. Finally, from a methodological point of view, a limitation
of our study relates to the use of Pearson correlations, which only capture the level of linear
association between assets. Thus, the measure of synchronization that the manuscript
manifests is a limited feature of the interactive evolution between a pair of elements of
a system that may be highly non-linear. However, this limitation does not threaten the
study’s validity because we still consider the most critical interactions for each ETF. In
other words, we consider the other ETFs’ influence on each other. Nevertheless, there is
certainly an interesting field of exploration where other measures of association consider
the non-linearity of the inter-relationships, such as the use of entropy measures.

Our work collects data from REFINITIV as a source for the information collected
regarding the ESG scores of the ETFs. Although it is an institution with reliable global
coverage in delivering financial information, its experience in ESG aspects is still devel-
oping. However, as it is a globally recognized institution in the financial and corporate
world and widely used among the leading international investment firms, its use as a data
source would allow the replication of these kinds of studies in other markets and coun-
tries. It also facilitates improving data collection and reporting systems for the financial
market. Likewise, using REFINITIV as a source of ESG information allows different studies
to be compared globally. One of the leading global shortcomings associated with ESG
information is the lack of comparability between different information providers.

Concerning the generalization of our results, the results may be maintained for the
class of assets employed in this study, particularly stock ETFs with a high level of liquidity.
However, replicating the results would be a matter of analysis in case of considering another
class of illiquid assets, such as small company ETFs or other financial ETFs considering
debt instruments, commodities, and cryptocurrencies.

Our study possesses some managerial insights:

1. For investors, to reduce the risk of synchronization in the face of adverse shocks, it is
recommended to invest in ETFs with a high ESG score.

2. For regulators to encourage the ESG information to promote a better decision-
making process.

3. For investment managers, our evidence illustrates another alternative to managing
portfolio risk based on the ESG score of funds.
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Regarding future research, we believe this paper opens new perspectives of learning
about the advantages of investing in financial assets with a high ESG score beyond its con-
tribution to the environment, society, and governance dimensions. In addition, our results
promote the interest in exploring other ways of understanding the contagion phenomenon
in financial markets, particularly about ESG assets, such as co-integration, co-movement,
connectedness methodologies, and the development of indicators that enhance systemic
risk monitoring and promote the ESG factor as a critical financial stability element.
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Appendix A. Comparative Analysis of the Theoretical and Empirical Financial
Networks Literature

Main Themes Authors Year Application Main Results

Stability &
fragility of
financial
systems

Kiyotaki, N.;
Moore, J. [28]

1997
Dynamic models of spillovers
between lenders and
borrowers.

The dynamic interaction between
credit limits and asset prices is a
powerful transmission mechanism by
which the effects of shocks persist,
amplify, and spill over to other sectors.

Allen, F.;
Gale, D. [29]

1997

Analysis of the behavior of
financial markets when
dealing with no diversifiable
risks and the presence of
intermediaries.

In an economy with intermediaries
and no financial markets,
accumulating reserves of safe assets
allows returns to be smoothed, the
non-diversifiable risk to be eliminated,
and an ex ante Pareto improvement
comparedwith the allocation in the
market equilibrium to be achieved.

D. Acemoglu,
A. Ozdaglar, and
A. Tahbaz-Salehi [76]

2015

Study of stability and financial
contagion among financial
networks of
interbank liabilities.

A densely connected financial
network enhances financial stability.
Nevertheless, beyond a certain point,
dense interconnections serve as a
mechanism for the propagation of
shocks, leading to a more fragile
financial system. Moreover, the same
factors contributing to resilience under
certain conditions may function as
significant sources of systemic risk
under others.
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Main Themes Authors Year Application Main Results

Networks of
financial

assets

Mantegna, R.N. [34] 1999
Graph analysis of the
topological structures of
financial stock markets.

There is a hierarchical arrangement of
stocks traded in a financial market.
The topological space is a
subdominant ultrametric space
associated with a graph connecting
the stocks of the portfolio analyzed.
The hierarchical tree of the
subdominant ultrametric space
associated with the graph provides a
meaningful economic taxonomy.

Mantegna, R.N.;
Stanley, H.E.;

Chriss, N.A. [37]
2000

Applications to financial
markets of power-law
distributions, correlations,
scaling, unpredictable time
series and random processes.

The behavior of complex systems such
as financial markets could be
explained by applying mathematical
and physics techniques.

Albert, R.;
Jeong, H.;

Barabási, A.L. [30]
2000

Analysis of the robustness of
complex systems under the
occurrence of errors.

All redundant systems do not share
error tolerance: it is displayed only by
a class of non-homogeneously wired
networks. Error tolerance depends on
selecting and removing a few nodes
that play a vital role in maintaining
the network’s connectivity.

Bernard, P.;
Ahmed, K.;
Pierre, C.J.;

Nouredine, Z.;
Zekri, L. [31]

2008
Study of the propagation of
wildfire using small-world
models.

Forest fire patterns are fractal, and that
critical exponents are universal, which
suggests that the
propagation/non-propagation
transition is a second-order transition.
Universality tells us that the
characteristic critical behavior of
propagation in real systems can be
extracted from the simplest
network model.

Haldane, A.G. [32] 2013

Discussion of the behavior
under stress of a complex and
adaptive network of financial
institutions and assets.

Financial markets as a complex
adaptive system allow considering
some of the lessons from other
network disciplines (ecology,
epidemiology, biology, and
engineering) into the financial sphere.
In addition, network approaches
provide a different view of the
structural vulnerabilities built up in
the financial system over the past
decade and suggest ways of
improving its robustness in the
period ahead.

Nikolaus
Hautsch, Julia
Schaumburg,

Melanie
Schienle [77]

2015

Using network
interdependence between
firms’ tail risk exposures to
estimate the measure of
financial companies’
contribution to systemic risk.

Results reveal many relevant risk
spillover channels and determine
companies’ systemic importance in
the U.S. financial system. Monitoring
companies’ systemic importance and
enabling transparent macroprudential
supervision is crucial for
financial stability.
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Main Themes Authors Year Application Main Results

Haldane, A.G. [32] 2012
Discussion regarding the
modeling of risks in
financial markets.

Modern finance is complex.
Regulation of modern finance is
almost certainly too complex. That
configuration spells trouble. Because
complexity generates uncertainty, not
risk, it requires a regulatory response
grounded in simplicity,
not complexity.

Eberhard, J.,
Lavin, J. F., &
Montecinos-

Pearce, A. [35]

2017
Analysis of the structure of
brokers’ transaction network
of stocks.

Changes in the networks of
transactions are correlated with
variables that describe
economic–financial environments. In
addition, changes in the brokers’
transaction network structure are
associated with a greater probability
of positive shocks of more than two
standard deviations in the stock
exchange index return and total
traded stock volume.

Lavin, J.F.;
Valle, M.A.;

Magner, N.S. [6]
2019

Study of the topology and
connectivity structure of
mutual funds and stocks
Applying bipartite
network methods.

Changes in the bipartite network
between stocks and funds and its
one-mode projection are correlated
with variables related to funds’
investment strategies and
industry-specific variables.
Consequently, these elements are a
new source of potential disturbance in
the financial network conformed by
stocks and mutual funds.

Lavin, J.F.;
Valle, M.A.;

Magner, N.S. [8]
2021

Modeling synchronization in
stock markets using
correlation-based
network methods.

Global stock synchronization is
dynamic over time, its minimums
coincide with significant financial
shocks, and it shrinks to its minimum
levels, indicating that the returns of
global markets are moving in a
synchronized way. Moreover, it is a
significant and positive factor in
regional synchronization. Regional
markets react heterogeneously to
global synchronization shocks,
suggesting that local and global
factors are synchronization sources.

Portfolio
selection &

risk
management

Onnela, J.P.;
Chakraborti, A.;

Kaski, K.;
Kertész, J.;

Kanto, A. [36]

2003

Applying asset trees to reflect
the economic taxonomy of
stock correlations and portfolio
diversification.

The diversification dimension of
portfolio optimization results in the
fact that the assets of the classic
Markowitz portfolio are located on the
outer leaves of the asset tree formed
by the stocks (nodes) and their
respective distances (correlations).

Diebold, F. &
Yılmaz, K. [70]

2014

Using variance decomposition
estimations as natural and
insightful measures of
connectedness among
financial firms.

Variance decompositions define
weighted, directed networks so that
connectedness measures are
intimately related to key measures of
connectedness used in the
network literature.
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Main Themes Authors Year Application Main Results

Výrost, T.,
Lyócsa, Š., &

Baumöhl, E. [40]
2019

Analysis of portfolio
optimization techniques based
on network-based models and
centrality measures of stocks.1

Network-based asset allocation
strategies improve key portfolio
return characteristics in an
out-of-sample framework, most
notably, risk and left-tail risk-adjusted
returns. Resolving portfolio model
selection uncertainties further
improves risk–return characteristics

Integration of
financial

markets &
Forecasting

models

Q. Ji, E. Bouri,
and

D. Roubaud [78]
2019

Analysis of information flow
among U.S. equities, strategic
commodities (oil and gold),
and BRICS equities using
dynamic networks models.

The integration structure of an
information transmission network is
unstable and changes over time. The
impact patterns of events are
dissimilar—some events impact the
local market only, whereas others have
a global impact.

Gao, H. L., &
Mei, D.C. [38]

2019
Study of the dynamics of
correlation structures between
U.S. and Asian stock markets.

Non-linear effects dominate stronger
dependencies between all indices after
the 2008 financial crisis. The
synchronicity decreases for significant
variations of firm specifics. The 2008
global financial crisis spread rapidly to
Asian markets compared with several
other financial crises or crashes.
China’s stock and U.S. markets exhibit
a lack of interdependence during the
2008 financial crisis.

Magner, N.S.,
Lavin, J.F.,

Valle, M.A.,
Hardy, N. [39]

2020

Applying network-based
models to forecasting the
implied volatility of
stock markets.

The length of the minimum spanning
tree is relevant to forecast volatility in
European and Asian stock markets,
improving forecasting models’
performance. In addition, the
evidence from this work establishes a
road map to deepen the
understanding of how financial
networks can improve the quality of
prediction of financial variables. The
latter is crucial during financial
shocks, where uncertainty and
volatility skyrocket.

Magner N,
Lavin JF, Valle M,

Hardy N. [74]
2021

Analysis of the use of the
implied stock market’s
volatility indices’ predictive
power on synchronizing global
equity indices returns.

An increase in the markets’ volatility
expectations, captured by the implied
volatility indices, is a good Granger
predictor of an increase in the
synchronization of stock market
returns in the following month.
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Appendix B. Comparative Analysis of Theoretical and Empirical Financial Performance and the ESG Literature

Main Themes Authors Year Application Main Results

Neutral impacts of ESG on
financial performance

Bauer, R., Koedijk, K., &
Otten, R. [54]

2015
Study the effect of ESG level on mutual
funds returns

Mutual funds with high ESG levels have no better
performance than lower-ESG-level mutual funds.

Mill G. [53] 2006

Examines the financial performance of a UK
unit trust that was initially “conventional”
and later adopted socially responsible
investment (SRI) principles (ethical
investment principles).

Mean risk-adjusted performance is unchanged by
the switch to SRI, with no evidence of over-or
under-performance relative to the benchmark market
index by any of the four funds.

Hamilton, Sally, Hoje Jo,
and Meir Statman. [79]

1993
Compare the mutual funds’ financial
performance between socially responsible
and conventional mutual funds

Socially responsible mutual funds do not earn
statistically significant excess returns, and the
performance of such mutual funds is not statistically
different from the performance of conventional
mutual funds.

Statman, M., &
Glushkov, D. [80]

2009

Study the stock returns of companies with
high scores on social responsibility
characteristics and shun stocks of
companies associated with tobacco, alcohol,
gambling, firearms, and military or nuclear
operations.

Authors find evidence consistent with the “no effect”
hypothesis, whereby the expected returns of socially
responsible stocks are approximately equal to the
expected returns of conventional stocks.

Aw, E. N. W., LaPerla, S. J.,
& Sivin, G. Y. [81]

2017
Study portfolios that outperform a
benchmark while allowing investors to
embrace ESG.

Top-quintile (most compliant) stocks ranked by ESG
score underperform the out-sample research
universe.
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Main Themes Authors Year Application Main Results

Positive impacts of ESG on
financial performance

Statman, Meir. [82] 2000

Using an index of socially responsibility
named “Domini Social Index” to compare
the financial performance of the SRI and
conventional mutual funds.

The Domini Social Index performed better than the
S&P 500 Index, but the differences between their
risk-adjusted returns are not statistically significant.

Serafeim, G. [83] 2020
Study the “public sentiment influences
investor views” about the value of
company sustainability activities.

The valuation premium for strong sustainability
performance increases as a function of positive
momentum in public sentiment. An ESG factor long
(short) on companies with superior (inferior)
sustainability performance and negative (positive)
ESG sentiment momentum delivered significant
positive alpha.

Konar, S., &
Cohen, M. A. [84]

2001
Study the market value of firms in the S&P
500 to objective measures of their
environmental performance.

[84] Ad environmental performance is negatively
correlated with the intangible asset value of firms.
Specifically, a 10% reduction in emissions of toxic
chemicals results in a USD 34 million increase in
market value (this magnitude varies
across industries).

Durán-Santomil, P.,
Otero-González, L.,

Correia-Domingues, R. H.,
& Reboredo, J. C. [85]

2019
Study the effects of socially responsible
investments (SRI) on European equity fund
performance.

Sustainability scores impacted positively on financial
performance considering returns and risk.

de Franco, C. [86] 2020

Study USA, Asia-Pacific, and Europe
portfolios based on this measure of
controversy from environmental, social and
governance (ESG) data.

Portfolios that excluded highly controversial stocks
outperform their benchmarks, except for the
Asia-Pacific zone.

Bauer, R., Koedijk, K., &
Otten, R. [54]

2005
Using German, UK, and U.S. ethical mutual
funds the study and explore their
financial risk.

Ethical funds are typically less exposed to market
return variability; they are small and more
growth-oriented compared with conventional funds.
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Main Themes Authors Year Application Main Results

Impact of ESG on
financial risk

De, I., &
Clayman, M. R. [57]

2015

Examine the relationship between the ESG
ratings of a company and its stock returns,
volatility, and risk-adjusted returns in the
post-2008 financial crisis era.

There is a negative relationship between ESG and
volatility in greater depth, given the
well-documented low-volatility anomaly
(outperformance of low-volatility stocks). Both (high)
ESG rating and (low) volatility positively impact
stock returns, but the ESG effect is independent of
the low-volatility effect.

Nofsinger, J., &
Varma, A. [59]

2014

Investigate the performance of SRI funds
during crisis and non-crisis periods to
empirically test the hypothesis that SRI
funds dampen downside risk for investors
during poor economic conditions

Compared with conventional mutual funds, socially
responsible mutual funds outperform during
market crises.

Becchetti, L., Ciciretti, R., &
Hasan, I. [61]

2015
Investigate the nexus between idiosyncratic
volatility and corporate social
responsibility.

Idiosyncratic volatility (IV) is negatively correlated
with corporate social responsibility (CSR-specific
stakeholder risk factor).

Boitan, I. A. [62] 2020

Study the synchronization between the
price return provided by sustainability
indices calculated for various
geographic regions.

Sustainability indices, which include companies
from Europe, Japan, U.S., World developed countries,
and World best-in-class, exhibit more correlation
price returns than conventional assets.

Ielasi, F., &
Rossolini, M. [60]

2019
Compare the risk-adjusted performance of
sustainability-themed funds with other
categories of mutual funds

Sustainable funds are better than other thematic
funds in overcoming financially turbulent periods
and currently benefit from SRI regulation
and disclosure.

Cerqueti, R., Ciciretti, R.,
Dalò, A., &

Nicolosi, M. [58]
2020

Compare funds highly ranked in
Environmental Social and Governance
(ESG) aspects with those with a poor ESG
compliance using network analysis.

SRI funds have a better resilience against shock
events by observing that the stability of the structure
of the SRI fund network varies less in the face of a
highly negative event

Renneboog, L., ter Horst, J.,
& Zhang, C. [87]

2011
Study the money flows into and out of
socially responsible investment (SRI) funds
around the world.

SRI money flows are less related to past fund returns.
Ethical money is less sensitive to past negative
returns than are conventional fund flows, especially
when SRI funds primarily use negative or
Sin/Ethical screens
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