MUJERES FUTBOLISTAS AMATEUR FÍSICAMENTE ACTIVAS,
LESIONADAS Y NO LESIONADAS DE RODILLA HACE 6
MESES, COMPARADAS A TRAVÉS DE UNA EVALUACIÓN
FUNCIONAL.

HORACIO ANDRÉS ACOSTA BIEL
JUAN JOSÉ GARCÍA-REY FONSECA
ANTONIO ENRIQUE IBARRA QUEZADA

Tesis para ser presentada en la Escuela de Kinesiología de la Universidad Finis Terrae para optar al título de Kinesiólogo.

Profesor Guía: Klgo. Jorge Vargas Toledo

Santiago, Chile
2015
Horacio Acosta B.
Juan José García-Rey F.
Antonio Ibarra Q.

Klgo. Jorge Vargas T.
AGRADECIMIENTOS

Queremos agradecer principalmente a nuestro profesor guía Jorge Vargas Toledo, por toda la ayuda que nos brindó durante el periodo de construcción de esta tesis, así también a nuestros familiares y seres queridos, ya que sin el apoyo de ellos este sueño sería imposible.

También agradecer a Gonzalo Niño por la ayuda brindada en la parte de estadística de nuestra tesis.

A nuestro profesor Claudio Oyarzo por sus consejos en cuanto a la evaluación FMS y por ayudarnos a conseguirnos participantes para nuestro estudio.

Y finalmente a todas las participantes voluntarias que hicieron posible la confección de esta tesis.
ÍNDICE DE CONTENIDOS

RESUMEN .. vi
ABSTRACT .. vii
ABREVIATURAS .. vili
INTRODUCCIÓN ... 1
1. MARCO TEÓRICO .. 3
 a. Futbol Femenino y Lesiones de Rodilla .. 3
 b. Factores de Riesgo en la Mujer Futbolista ... 3
 c. Estabilidad del core .. 7
 d. Control neuromuscular .. 9
 e. Flexibilidad Muscular ... 10
 f. Evaluación FMS en el futbol femenino ... 13
 g. Pregunta de Investigación ... 15
 h. Hipótesis de Trabajo .. 16
 i. Objetivo general ... 18
 j. Objetivos específicos ... 19
2. MATERIAL Y MÉTODO ... 20
 a. Diseño de la investigación ... 20
 b. Universo y tipo de muestreo ... 21
 c. Criterios de inclusión ... 21
 d. Criterios de exclusión ... 22
 e. Metodología de la obtención de datos .. 22
 f. Herramientas ... 24
 g. Variables de estudio ... 26
 h. Análisis estadístico ... 28
3. RESULTADOS ... 29
4. DISCUSIÓN ... 33
 a. Limitaciones ... 36
 b. Proyecciones .. 37
CONCLUSIÓN .. 38
BIBLIOGRAFÍA .. 39
ANEXOS .. 51
RESUMEN

El principal objetivo de este estudio es identificar diferencias significativas a través de una evaluación funcional entre mujeres futbolistas amateurs, lesionadas o no lesionadas de rodilla en los últimos 6 meses, mediante la evaluación FMS. Para esto se seleccionó a un grupo de 30 mujeres futbolistas amateurs, las que fueron divididas en 2 grupos, uno compuesto por mujeres que han sufrido lesiones en los últimos 6 meses (promedio de edad 24,28 ± 2,4) y otro por mujeres que su última lesión fue en un tiempo mayor a 6 meses (promedio de edad 23,96 ± 2,4). Se les realizó la evaluación FMS una sola vez en el tiempo a cada una de las participantes para identificar la existencia de diferencias significativas tanto en el puntaje total, como en las pruebas que evalúan la estabilidad del core, control neuromuscular y flexibilidad de rodilla entre ambos grupos. Los resultados muestran que no existieron diferencias significativas tanto en el puntaje total (α=0,05; FMS total < 6 meses = 16 ± 2; FMS total > 6 meses 17 ± 1.5), como en las variables antes mencionadas entre ambos grupos. Se recomienda, para futuras investigaciones, realizar estudios de carácter longitudinal y así lograr una mayor recolección de datos durante un tiempo determinado sobre el rendimiento de las deportistas. Con esos datos se podrían realizar planes de tratamiento y prevención de lesiones en el fútbol femenino.

Palabras Claves: Evaluación funcional, FMS (Functional Movement Screen), control neuromuscular, estabilidad del core, flexibilidad de rodilla, futbol femenino, factores de riesgo.
ABSTRACT

The main objective of this study is to identify significant differences through a functional assessment between female amateur soccer players, with and without knee injury in the last six months, using a functional assessment called FMS. We selected a group of 30 amateur women soccer players, the 30 participants were divided into 2 groups, one composed of women who have suffered injuries in the last 6 months (mean age 24.28 ± 2.4) and the other group of women that her last injury was greater than 6 months (mean age 23.96 ± 2.4). The FMS was taken once in time to see whether there were significant differences in both the total score, as in the trials evaluating core stability, flexibility and neuromuscular control of the knee between the two groups. The results show no significant differences in both the total score (α = 0.05, total FMS <6 months = 16 ± 2 Total FMS> 6 months 17 ± 1.5), as in the aforementioned variables between groups. It is recommended for future research, to create longitudinal studies and achieve greater data collection for a certain time about the athlete’s performance. With this information it may be possible to create injury treatment and prevention programs in female soccer.

Key words: Functional assessment, FMS (Functional Movement Screen), neuromuscular control, core stability, knee flexibility, female soccer, risk factors.
<table>
<thead>
<tr>
<th>ABREVIATURAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASLR</td>
</tr>
<tr>
<td>EEII</td>
</tr>
<tr>
<td>EIAS</td>
</tr>
<tr>
<td>FIFA</td>
</tr>
<tr>
<td>FMS</td>
</tr>
<tr>
<td>LCA</td>
</tr>
<tr>
<td>NIZ</td>
</tr>
<tr>
<td>OTG</td>
</tr>
<tr>
<td>ROM</td>
</tr>
<tr>
<td>SNC</td>
</tr>
<tr>
<td>TAT</td>
</tr>
</tbody>
</table>
INTRODUCCIÓN

El fútbol es uno de los deportes más populares entre las mujeres, actualmente el 22% del total de jugadores de fútbol del mundo son de sexo femenino.\(^1\)

Dentro de los beneficios asociados a su práctica, particularmente en las mujeres, podemos señalar a la mejora del estilo de vida, la disminución de la tasa de embarazo adolescente, disminución del uso de drogas y el uso y abuso del alcohol, mejora de la imagen corporal y la autoestima, aumento de la masa ósea, la función cardiovascular y el control de peso entre otros.\(^1\)

En el fútbol femenino el reporte de lesiones ha aumentado significativamente, \(^1\)-\(^4\) siendo la lesión en la articulación tibiofemoral la que acumula el mayor porcentaje de ellas en comparación con los hombres.\(^1\),\(^2\),\(^4\)

Dentro de las lesiones de rodilla más comunes se destacan las de partes blandas como ligamentosas, musculares y tendinosas, \(^1\),\(^3\)-\(^6\) entre estas la que predomina es la del ligamento cruzado anterior (LCA), siendo el mecanismo de lesión predominante el de no contacto. \(^1\),\(^3\) La incidencia de lesiones aumenta cuando ya ha presentado anteriormente una lesión que compromete LCA.\(^7\)

Las razones que pueden explicar un índice mayor de lesiones de rodilla en mujeres no están aún claras.\(^1\) Dentro de los factores intrínsecos se señala a las diferencias en la anatomía entre los distintos géneros, laxitud ligamentosa,
alineamiento articular de la rodilla y fuerza muscular\(^1\), los factores extrínsecos son el acondicionamiento físico, el tipo de superficie del campo de juego y el desarrollo de coordinación neuromuscular.\(^1\)

Realizar la evaluación funcional llamada FMS a un grupo de futbolistas amateur entre 18 – 35 años de edad, nos permite analizar factores de riesgo que tiene la mujer para sufrir lesiones de rodilla.\(^7\) La posibilidad de evaluar a través del FMS la inestabilidad del core, el control neuromuscular y las alteraciones en la movilidad de rodilla nos permitirá obtener datos valiosos en relación al rendimiento y también sobre los déficits que puede presentar las jugadoras para afrontarlos de una mejor manera en el futuro.

A través del análisis de los resultados, es posible detectar cuáles son los factores de riesgo específicos que puedan presentar las jugadoras amateur de futbol entre 18 y 35 años, de esta manera, plantearse programas de rehabilitación específicos que nos podrían permitir disminuir el alto índice de lesiones de rodilla que han estado presentando las mujeres en el último tiempo.
1. MARCO TEÓRICO

a. Futbol Femenino y Lesiones de Rodilla

Es sabido que el fútbol es un deporte con efectos favorables como la disminución en los factores de riesgo cardiovasculares, en la salud ósea y en el control del peso corporal, es uno de los deportes más populares entre las adolescentes mujeres y cada día son más las que se integran a la práctica de este, por otro lado es un deporte de contacto donde abundan las lesiones de extremidades inferiores (EEII), tanto en mujeres como en hombres, en donde el sexo femenino presenta un porcentaje mayor de lesiones de rodilla.

Existen varios argumentos que explican por qué la lesión de rodilla en mujeres futbolistas tiene un alto índice, sobre todo la ruptura del ligamento cruzado anterior (LCA) en donde en comparación con los varones, la mujer puede sufrir de esta lesión con una frecuencia hasta 7 veces mayor.

b. Factores de Riesgo en la Mujer Futbolista.

Las teorías que explican por qué la mujer tiene un alto riesgo de sufrir lesiones de rodilla en el fútbol, especialmente de ruptura de LCA son abundantes. Nilstad A, y cols. en el año 2014, Murphy DF y cols. en el año 2003 y Fulton J y cols. en el año 2014, han demostrado que uno de los factores para provocar una lesión de rodilla, es la lesión previa de la misma, ya que esta produce
cambios a lo largo de la cadena cinética, esto es, déficits propioceptivos, disminución del rango de movimiento (ROM), excesiva flexibilidad y acumulación de tejido cicatricial, sumado a esto agregan que una mala rehabilitación es un factor de riesgo importante.\(^4,11,13\)

Saunders N y cols. en el año 2014 a través de su investigación, llegaron al consenso de que un control neuromuscular deficiente en la cadera y la rodilla es factor de riesgo para las lesiones del LCA, en particular en mujeres.\(^14\) Por lo que un programa de rehabilitación neuromuscular de rodilla disminuiría la incidencia de lesiones de rodilla en las deportistas.\(^9\) En la investigación realizada Walden M y cols. en el año 2012 observaron una disminución importante en lesiones de rodilla en mujeres futbolistas que realizaban programas enfocados en la prevención de lesiones, en las cuales se hacía un énfasis en el entrenamiento de control neuromuscular.\(^9\)

Otro factor importante es la edad de las deportistas, a medida que pasan los años el organismo va sufriendo diversos cambios, los cuales aumentan la incidencia de lesiones en las mujeres deportistas.\(^10,11\)

Söderman K y cols. en el año 2001 observaron que el aumento en la laxitud articular, la hiperextensión de rodilla, el desbalance Cuádriceps/isquiotibiales y la mayor frecuencia semanal de entrenamiento, eran los factores de riesgo más importantes para generar una lesión de rodilla en mujeres futbolistas.\(^10\) Dicho estudio aclara que la mujer tarda más que el hombre en llegar a generar el torque máximo de los isquiotibiales, esto fue concluido tras una seria de evaluaciones isokinéticas. El peligro que reviste este retraso en la activación de los isquiotibiales es que mediante cambio bruscos de velocidad se van a generar traslaciones anteriores de la tibia y fuerzas valguizantes de rodilla.
que provocarían sobrecarga en las estructuras ligamentosas de la articulación tibiofemoral aumentando el riesgo de padecer lesiones en esta articulación.10

El riesgo de sufrir lesiones no traumáticas, aumenta para las mujeres por el hecho de presentar mayor porcentaje de hormonas como los estrógenos y el estradiol.14,15 En el caso del estrógeno se han identificado receptores específicos para esta hormona en los fibroblastos de los ligamentos y en específico en el LCA. Por otro lado la presencia de estradiol disminuye la resistencia ligamentosa.14, 15

Ya que existe esta relación entre las hormonas y la incidencia de lesiones, al presentar aumento de estas como en la fase premenstrual y menstrual produce una disminución de la fuerza y un aumento en la fatigabilidad, por lo que el riesgo de sufrir lesiones también aumenta.14, 15

Las mujeres que no utilizan píldoras anticonceptivas tienen aún más probabilidades de sufrir lesiones en este periodo comparado con las mujeres que si utilizan píldoras anticonceptivas.14, 15

Otro factor importante que presentan en mayor cantidad las mujeres que los hombres es la hiperlaxitud ligamentosa. Este es un factor que determina una mayor prevalencia en la producción de lesiones articulares y lesiones de extremidad inferior.4, 16, 17

Ireland MN y cols. en el año 2004 evaluaron el salto vertical de hombres y mujeres, el cual demostró que la mujer al aterrizar el salto mantienen una
posición más erguida, con menos flexión de rodilla, cadera y generando un valgo dinámico de rodilla, lo que las predispone a sufrir lesiones.16 Este valgo dinámico de rodilla genera un stress por la cara medial de la misma y se asocia a rotaciones externas de la tibia, provocando dolores anteriores de rodilla, y predisponiendo a las atletas a lesiones ligamentosas como rupturas de LCA o esguinces mediales de rodilla.16

Otro factor de riesgo, para sufrir lesiones de rodilla, es la inestabilidad del core, ya que tiene directa relación con lesiones de EEII.12

La principal función del core durante las distintas maniobras deportivas es mantener la estabilidad de todo el cuerpo, y permitir una óptima transferencia de fuerzas y movimiento hacia el segmento terminal (de proximal a distal), para que se logren los movimientos integrados de la cadena cinética y así optimizar una máxima eficiencia.12,18

Se ha demostrado que un pobre control del core predispone movimientos incontrolados de las articulaciones.12,18 Sumado a esto, una inestabilidad del core parece ser un factor de riesgo modificable para prevenir lesiones del mismo core, de EEII y de rodilla especialmente en mujeres. Estos factores se pueden identificar mediante una evaluación funcional pre-competitiva, para así poder prevenir lesiones futuras.12,18

La flexibilidad ha sido identificada como uno de los factores de riesgo en las lesiones de rodilla,6 esto debido a que las lesiones más comunes que sufre
la articulación tibiofemoral, y a la que los profesionales de la salud más se enfrentan dentro de la práctica deportiva, son las musculotendinosas. 4-6

c. Estabilidad del core.

Se define estabilidad del core como la habilidad de controlar la posición y el movimiento del tronco sobre la pelvis y las piernas, para permitir una óptima transferencia de fuerzas y movimiento hacia el segmento terminal a través de la cadena cinética.12 También como la habilidad de las estructuras pasivas (ligamentos y facetas vertebrales), y los estabilizadores activos involucrados en la región lumbopélvica, para mantener una apropiada postura, balance y control del tronco y cadera durante movimientos estáticos y dinámicos.7,18

Existe evidencia que asocia una inestabilidad del core con lesiones de EEII, especialmente de rodilla.12, 18 Esto se explica ya que el core, palabra en inglés, la cual tiene por significado “núcleo” traducido al español, inicia todos los movimientos del cuerpo, las sinergias musculares van desde proximal a distal, esto quiere decir que si la musculatura del core no puede brindar una estabilidad adecuada, provocara movimientos y transferencias de fuerzas alterados en la cadena cinética, generando lesiones.12,18-20

El modelo de la cadena cinética se refiere al cuerpo como un sistema relacionado de segmentos interdependientes, trabajando a menudo en una
La musculatura del core se refiere a esos músculos que se encuentran alrededor e insertados en la región lumbopélvica. Estos músculos actúan sinérgicamente para estabilizar el tronco y la cadera, contribuyendo a la estabilidad de las articulaciones más distales, incluyendo la rodilla. Los músculos abdominales, paraespinales y glúteos son el foco de los programas de estabilidad del core y se cree que mejoran el rendimiento y reducen el riesgo de lesiones.

Está demostrado que mujeres y hombres tienen movimientos significativamente distintos de tronco y de cadera en el plano coronal durante tareas como el aterrizaje, la sentadilla y el “side step”. Específicamente las mujeres exhiben patrones de movimientos del tronco que incrementan el valgo dinámico de rodilla. El aumento del valgo dinámico de rodilla es una factor de riesgo para sufrir ruptura de LCA y esguinces mediales.

Las mujeres muestran una mayor aducción de cadera mientras realizan maniobras deportivas tales como correr, aterrizar y “side step”, las cuales incrementan el valgo de rodilla y la rotación interna de cadera, de modo que predisponen a la deportista a sufrir lesiones.

Las mujeres al tener una inestabilidad del core no tan solo alteran la cadena cinética, sino que realizan compensaciones posturales hacia distal, lo que
las predispone de una gran manera a sufrir de lesiones de EEII, especialmente de rodilla.

d. Control neuromuscular.

El control neuromuscular puede ser operacionalmente definido como la capacidad de cualquier articulación, pero en este caso específicamente de la articulación de la rodilla, para mantener la posición después de una conmoción externa.21,22

Los procesos neurofisiológicos implicados en el control neuromuscular y regulación del movimiento incluyen al sistema nervioso central (SNC), que comprende el cerebro y la médula espinal, el sistema nervioso periférico, que comprende vías aferentes y eferentes, el sistema músculo-esquelético y el sistema sensorial compuesto de una variedad de receptores sensoriales, incluyendo huso muscular (MS), órgano tendinoso de Golgi (OTG), receptores subcutáneos, somatosensoriales y mecanorreceptores.12,23

Estos procesos describen colectivamente el control del sistema neuromúsculo-esquelético que planifica, organiza, ejecuta y regula las modalidades motoras en el cuerpo.12

El estado del sistema musculoesquelético puede ser representado a través de variables como la longitud del músculo, tono, rigidez y tasa de acortamiento.12,13 Estas variables son supervisadas por los receptores sensoriales
y transmitidas a través de vías aferentes hacia el sistema nervioso central, donde se integran y procesan con información propioceptiva y estímulos (Táctil, somatosensorial, visual y vestibular) para generar comandos de activación muscular.12,23

Existe evidencia que sugiere que un pobre control neuromuscular o una anormal biomecánica de las extremidades inferiores, y en particular de la articulación de rodilla durante la ejecución de movimientos deportivos peligrosos, es uno de los principales mecanismos para contribuir a las lesiones de rodilla en mujeres.14,21

Los déficits neuromusculares pueden conducir a movimientos de tronco incontrolados durante movimientos deportivos, que a su vez pueden colocar la rodilla en una posición de valgo, aumentando la abducción y el torque sobre la misma, el resultado sería una alta tensión de los ligamentos de rodilla y dar lugar a lesiones.14,21

e. Flexibilidad Muscular
Se define flexibilidad como aquella cualidad que, gracias a la extensibilidad del componente músculotendinoso y al límite articular, permite realizar movimientos con la máxima amplitud posible.\(^5\) El tejido conectivo se conforma de dos componentes al ser estirado, uno elástico y otro plástico.\(^{24}\) A este último componente se le atribuyen los cambios de rango de movimiento a largo plazo.\(^{24}\)

Dentro de los efectos a corto plazo que se obtienen con trabajos de flexibilidad se encuentran la disminución de la rigidez del tendón, disminución de la fuerza máxima.\(^{24}\)

Dentro de los efectos a largo plazo que se obtienen con trabajos de flexibilidad están, aumentar el rango de movimiento, pero también tiende a aumentar la tensión pasiva y la rigidez de la musculatura en los límites del rango de movimiento.\(^{24}\)

Programas de estiramiento a largo plazo pueden conducir a un aumento de la flexibilidad, o el rango de movimiento de una articulación en particular.\(^{24}\) Estos hallazgos son importantes al considerar los beneficios potenciales del estiramiento en las lesiones musculares. Esto se explica, ya que al mejorar la flexibilidad aumenta la llamada “zona de no lesión” (NIZ) que es el rango en el cual la articulación podrá moverse libremente sin presentar daño o lesión.\(^{24}\)

Esta ampliación de la NIZ permitiría un mayor rango de movimiento a través de la cual el músculo se puede mover libremente.\(^{24}\) Esto daría lugar a
menos tensión en el músculo en un punto dado en el rango de movimiento y por lo tanto requieren una mayor fuerza para estirar el músculo hasta el punto de fallo.24

Por otra parte, la capacidad de estirar el musculo sin ser dañado puede permitir a las atletas asumir posiciones inusuales durante la práctica deportiva que de otra manera podría causar lesiones.24

Las lesiones ocurren en determinadas longitudes, como resultado del estiramiento del musculo a través de una fuerza excéntrica más allá del rango de no lesión hasta el fallo.24 El músculo debe tener la longitud necesaria para lograr el movimiento en ese rango sin causar un aumento en el estrés sobre el musculo.24

Liu H y cols. en el año 2012 a través de una revisión de estudios pasados, demostraron en una prueba de contracción isométrica, que sujetos con una flexibilidad normal de isquiotibiales en comparación con sujetos con una flexibilidad pobre de isquiotibiales, tenían un mayor ángulo de flexión de rodilla para el torque máximo de flexión de rodilla.5 Esto quiere decir que un sujeto con acortamiento de isquiotibiales en comparación con un sujeto con flexibilidad de isquiotibiales normal, necesitaría mayor tensión muscular para lograr el mismo rango de movimiento, lo que aumenta el riesgo de lesiones musculotendineas.5,6

Woods k. y cols. En el año 2007 al realizar una revisión de una variedad de estudios sobre el trabajo precompetitivo, la flexibilidad y las lesiones
musculares, observo que sujetos con pobre flexibilidad tienen 2,5 veces más riesgo de lesiones en comparación con un sujeto con una flexibilidad promedio y con hasta 8 veces más riesgo que un deportista con una excelente flexibilidad.24

Se ha observado que al presentar una mejor flexibilidad de la musculatura de la rodilla, como los isquiotibiales, el riesgo de presentar lesiones de rodilla disminuye.11 Así también se ha observado que la falta de flexibilidad se ha asociado a lesiones específicas.25

Se ha observado que el uso de trabajos de flexibilidad es uno de los métodos usados para la prevención de lesiones de rodilla, sobre todo las lesiones musculares.26

f. \textbf{Evaluación FMS en el futbol femenino}

La evaluación FMS fue creada por Gray Cook el año 1997, diseñada para detectar patrones de movimientos alterados, y así poder crear la mejor intervención posible. Hoy en día se han realizado investigaciones en relación al fútbol y el FMS y se han comparado distintas variables en los estudios que pueden ser de gran ayuda en el área de análisis y prevención de lesiones.27-29

Grygorowicz M y cols. en el año 2013 realizaron un estudio con futbolistas mujeres, y su principal objetivo era analizar las anormalidades de las longitudes musculares de las EEII, los patrones de movimientos, y el impacto de
las limitaciones funcionales musculares en la correcta ejecución de los patrones de movimiento, mediante el test FMS.28 En este estudio concluyeron que las diferencias en la flexibilidad del recto femoral y los isquiotibiales en mujeres futbolistas con distintos niveles de entrenamiento, puede ser consecuencia de un impacto a largo plazo del entrenamiento de futbol en el sistema musculo-tendineo y en las estructuras articares.28

En otro estudio realizado por Kiesel K y cols. en el año 2007 tenían por objetivo determinar la relación en el puntaje del FMS en jugadores de futbol profesional con la probabilidad de sufrir lesiones graves.27 Los resultados de este estudio sugieren que la medición con el FMS logra identificar factores de riesgo en futbolistas profesionales. También sugieren que futbolistas con patrones de movimientos alterados medidos mediante el FMS, tienen una mayor probabilidad de sufrir lesiones en comparación con los futbolistas que sacaron un mayor puntaje en la prueba.27

Por ultimo Lloyd R y cols. en el año 2015 estudiaron la relación entre el puntaje del FMS, la maduración y el rendimiento físico en jóvenes futbolistas.29 Demostraron que la variación en el rendimiento físico en jóvenes futbolistas, puede ser explicado tanto por el puntaje en el FMS como por el grado de maduración de los jugadores.29

Como se puede ver en los estudios anteriores las variables a analizar mediante esta prueba pueden ser variadas, y las conclusiones o teorías que pueden entregar a la ciencia del deporte son de suma importancia en cuanto al análisis y prevención de lesiones de los o las jugadoras de fútbol.
g. Pregunta de Investigación

¿Existe diferencia en el puntaje de la evaluación FMS entre mujeres que han presentado lesión de rodilla en los últimos 6 meses en comparación a mujeres que han presentado lesión de rodilla en un tiempo mayor a 6 meses?
h. Hipótesis de Trabajo

H_1

Las mujeres futbolistas amateurs que presentaron lesión de rodilla en los últimos 6 meses obtendrán un puntaje menor en el puntaje total del FMS en
comparación con las mujeres futbolistas amateurs que presentaron lesión de rodilla en un tiempo mayor a 6 meses.

H_0

Las mujeres futbolistas amateurs que presentan lesión de rodilla en un tiempo menor a 6 meses no obtendrán un puntaje menor en la evaluación FMS en comparación con las mujeres futbolistas amateurs que presentan lesión de rodilla en un tiempo mayor a 6 meses.

H_2

Las mujeres futbolistas amateur que presentaron lesión de rodilla en los últimos 6 meses, obtendrán un puntaje inferior en la evaluación FMS que involucren estabilidad del core, control neuromuscular y flexibilidad de rodilla, en comparación a la mujeres que presentaron lesión de rodilla en un tiempo mayor a 6 meses.
i. **Objetivo general.**

Identificar las diferencias significativas en los resultados de una evaluación funcional entre mujeres futbolistas amateurs físicamente activas que presentaron lesión de rodilla en los últimos 6 meses y mujeres futbolistas amateurs que presentaron lesión de rodilla en un tiempo mayor a 6 meses.
j. **Objetivos específicos**

Evaluar el control neuromuscular, flexibilidad de rodilla y estabilidad del core en el grupo de mujeres futbolistas con lesión de rodillas en los últimos 6 meses y en el grupo de mujeres que presentaron lesión de rodilla en un tiempo mayor a 6 meses, a través de la evaluación funcional llamada FMS.
Comparar el puntaje total obtenido en la evaluación FMS entre mujeres que presentaron lesiones de rodillas en los últimos 6 meses y a las que presentaron en un tiempo mayor a 6 meses.

Comparar el puntaje obtenido entre ambos grupos de jugadoras, en las pruebas del FMS que evalúan la estabilidad del core.

Comparar el puntaje obtenido entre ambos grupos de jugadoras, en las pruebas del FMS que evalúan el control neuromuscular.

Comparar el puntaje obtenido entre ambos grupos de jugadoras, en las pruebas del FMS que evalúan la flexibilidad de rodilla entre ambos grupos.

2. MATERIAL Y MÉTODO

a. Diseño de la investigación

Este es un estudio de enfoque cuantitativo, descriptivo, de tipo comparativo y transversal.
b. Universo y tipo de muestreo

El universo de nuestro estudio son mujeres jugadoras de fútbol amateur del sector Nor-oriente de la ciudad de Santiago. El tipo de muestreo es no probabilístico y la muestra en estudio son mujeres futbolistas amateurs (N = 30) de la ciudad de Santiago, cuyas edades fluctúan entre los 18 y 35 años, que hayan sufrido lesiones de rodilla.

c. Criterios de inclusión

Ser mujer

Estar en un rango de edad entre los 18 y 35 años.

Jugar al menos una vez a la semana fútbol.
Haber sufrido alguna vez de alguna lesión de rodilla, ya sea ósea, muscular, ligamentosa o tendinosa.

d. Criterios de exclusión

Presentar algún tipo de dolor de alta intensidad, que le impida realizar el test.

Presencia de lesión de rodilla que por indicación médica no permita realizar actividad física de impacto.

Presentar, al momento de la evaluación, de lesiones que no sea de rodilla.

e. Metodología de la obtención de datos

En esta investigación se midieron 30 futbolistas femeninas amateur entre los 18 y 35 años de edad, que juegan en el sector Nor-orienté de la región Metropolitana. Estas jugadoras fueron evaluadas mediante la prueba llamada FMS (Functional Movement Screen).

Las participantes asistieron a la Universidad Finis Terrae durante el mes de Diciembre del año 2014 en la sala A411. Se consideraron variables las cuales
fueron estandarizadas para las evaluaciones de las deportistas. Para la realización de las evaluaciones se utilizó una sala acondicionada la cual nos permitió contar con una variable de temperatura en iguales condiciones para todas las mujeres futbolistas evaluadas. Así mismo contamos con luz artificial proveniente de la sala A-411 la cual fue siempre utilizada en cada una de nuestras evaluaciones, sumado a esto la luz natural no vario de gran manera, ya que las evaluaciones se realizaron siempre en el mismo horario el cual fue entre las 10 am y 6 pm. Las evaluaciones fueron durante 1 semana y las participantes tuvieron la opción de elegir uno de esos días para su evaluación. Para mayor objetividad del test, las evaluaciones fueron tomadas por uno solo de los tres tesistas. El evaluador fue Juan José García-Rey debido a que él estaba más capacitado y contaba con mayor experiencia en dicha evaluación. Fueron citadas con ropa deportiva y sin haber realizado actividad física previa el día de la evaluación. Las participantes llenaron una ficha para obtener datos necesarios para nuestra investigación (ver ANEXO 1). Las jugadoras fueron divididas en dos grupos, el primero tiene un criterio de inclusión de no haber sufrido ninguna lesión de rodilla en los últimos 6 meses, y el segundo haber sufrido una lesión de rodilla dentro de los últimos 6 meses. Antes de comenzar con las evaluaciones, todas las participantes fueron informadas en detalle sobre los procedimientos de la evaluación y sus posibles riesgos y beneficios para su preparación.

Se les midió una sola vez y antes de hacerlo, a cada jugadora se le explicó claramente cómo realizar los movimientos de cada una de las 7 pruebas que conforman el FMS. Las jugadoras tuvieron una máximo de 3 intentos por cada prueba, y las pruebas que sean asimétricas, se realizaron 3 intentos por cada lado. El mejor de los 3 intentos fue registrado. Cualquier dolor generado durante los movimientos de las pruebas quedó registrado y se especificó en la hoja la zona del dolor, otorgándoles un puntaje de “0” a dichas jugadoras en esa prueba. Véase ANEXO 2 para descripción del FMS.
f. Herramientas

Kit FMS

Este fue confeccionado por los autores tomando las medidas originales, debido a que por un tema de costo nos fue imposible adquirir uno original. Gray Cook, el autor, aprueba e incentiva la confección de este kit de evaluación. Para esto se utilizó una tabla de 2 pulgadas de alto por 6 pulgadas de ancho y 55 pulgadas de largo, una barra cilíndrica de 48 pulgadas de largo, 2 varas cilíndricas de 25 pulgadas de largo y un elástico tubular.

Balanza

Se utilizó una balanza digital para adulto marca Health o Meter 844KL para medir el peso de las participantes. Para esto las participantes se subieron a la balanza, descalzas y con la menor cantidad de ropa posible.

Cinta Métrica

Se utilizó una cinta métrica para medir la talla de las participantes. En una pared se midió un metro de altura e inmediatamente después se pegó la cinta
métrica pidiéndoles a las participantes, sin zapatillas, que se ubicaran de espalda a esta lo más derecha posible midiendo la talla obtenida.
g. Variables de estudio

Variables independientes.

- Lesión de rodilla

 o Definición conceptual: Cambio anormal en la morfología de las estructuras de la rodilla o aquellas que tengan relación directa con esta articulación, producida por un daño externo o interno.

 o Definición operacional: Diagnóstico médico obtenido en la ficha que lleno cada participante.

 o Enfoque: Cualitativo, nominal

Variables dependientes.
• Control neuromuscular

 o Definición conceptual: Capacidad de cualquier articulación, para mantener la posición después de una conmoción externa.

 o Definición operacional: Puntaje obtenido en las pruebas de la evaluación FMS que evalúan el control neuromuscular.

 o Enfoque: Cuantitativo, discreto

• Flexibilidad de rodilla.

 o Definición conceptual: Cualidad que, gracias a la extensibilidad del componente músculo-tendinoso y al límite articular, permite realizar movimientos con la máxima amplitud posible

 o Definición operacional: Puntaje obtenido en las pruebas de la evaluación FMS que evalúan la flexibilidad de rodilla.

 o Enfoque: Cuantitativo, discreto

• Estabilidad del core.
o Definición conceptual: Se refiere a los grupos musculares del tronco, de la pelvis y de las extremidades para el mantenimiento de la estabilidad de la columna vertebral y de la pelvis, ayudando a generar y transferir la fuerza necesaria desde segmentos mayores a los pequeños del cuerpo durante las actividades y movimientos del cuerpo.

o Definición operacional: Puntaje obtenido en las pruebas de la evaluación FMS que evalúan la estabilidad del core.

o Enfoque: Cuantitativo, discreto

Variables desconcertantes.

- Motivación.
- Alimentación.
- Fatiga acumulada.
- Ciclo menstrual
- Tratamiento Kinésico
- Medicamentos

h. **Análisis estadístico**
Para comprobar la distribución de la muestra se utilizó el test de Shapiro Wilk el cual mostro una normalidad en esta ($\alpha > 0,05$).

Se utilizó el programa Graphpad Prism 5.0 para analizar los datos obtenidos. Para esto se introdujeron los datos agrupados según los resultados obtenidos en la evaluación funcional realizada a ambos grupos de mujeres futbolistas amateurs. Para determinar la diferencia en el puntaje obtenido entre ambos grupos se utilizó te student no pareado con un nivel de significancia de $\alpha = 0,05$.

3. RESULTADOS

Luego del análisis estadístico de la evaluación FMS realizada a dieciséis mujeres (Promedio de edad 23,96 ±2,4), que formaron parte del grupo de
mujeres futbolistas que presentaron lesiones de rodilla en un tiempo mayor a 6 meses, y a catorce mujeres (Promedio de edad 24,28 ± 2,4), que formaron parte del grupo de mujeres futbolistas que presentaron lesiones de rodilla en un tiempo menor a 6 meses, los resultados se observan en la siguiente tabla.

Tabla N º 1

Puntaje FMS

<table>
<thead>
<tr>
<th>Pruebas</th>
<th><6 meses</th>
<th>>6 meses</th>
<th>Valor P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Promedio ± DE</td>
<td>Promedio ± DE</td>
<td></td>
</tr>
<tr>
<td>FMS total</td>
<td>16 ± 2,0</td>
<td>17 ± 1,5</td>
<td>0,344</td>
</tr>
<tr>
<td>Deep Squat</td>
<td>2 ± 0,4</td>
<td>2,1 ± 0,3</td>
<td>0,189</td>
</tr>
<tr>
<td>Hurdle step</td>
<td>2,4 ± 0,5</td>
<td>2,4 ± 0,5</td>
<td>0,470</td>
</tr>
<tr>
<td>Inline Lunge</td>
<td>2,7 ± 0,5</td>
<td>2,8 ± 0,5</td>
<td>0,425</td>
</tr>
<tr>
<td>Shoulder mobility</td>
<td>2,6 ± 0,8</td>
<td>2,8 ± 0,6</td>
<td>0,429</td>
</tr>
<tr>
<td>ASLR</td>
<td>2,6 ± 0,5</td>
<td>2,4 ± 0,5</td>
<td>0,243</td>
</tr>
<tr>
<td>Push up</td>
<td>1,9 ± 0,8</td>
<td>2,1 ± 0,8</td>
<td>0,238</td>
</tr>
<tr>
<td>Rotary stability</td>
<td>2,1 ± 0,4</td>
<td>2,1 ± 0,3</td>
<td>0,248</td>
</tr>
</tbody>
</table>

En esta tabla se observan los valor obtenidos entre ambos grupos, como promedio y desviación estándar, en la evaluación FMS. Además se observa el desglose del puntaje obtenidos por ambos grupos en las distintas pruebas que conforman la evaluación FMS.

Así, ningún valor de P, tanto en el puntaje total como en las distintas pruebas, es menor α= 0,05 por lo que no existe una diferencia estadística significativa en los distintas variables observadas en esta tabla.
Además se desglosó el resultado de cada una de las pruebas del FMS que miden: estabilidad del core, control neuromuscular y flexibilidad de rodilla, como se observa en los siguientes gráficos.

Grafico N° 1

Pruebas de estabilidad del Core

En el gráfico N° 1 se observan los valores obtenidos, por ambos grupos de mujeres futbolistas amateurs, en las pruebas del FMS que evalúan la estabilidad del core.

Deep squat (P = 0,189); Hurdle step (P = 0,470); Inline lunge (P = 0,425); ASLR (P = 0,243); Push up (P = 0,238); Rotary stability (P = 0,248). Así que ningún valor de P es menor a α = 0,05. Por lo tanto no existe diferencia estadística significativa.
En el gráfico N°2 se observan los valores obtenidos, por ambos grupos de mujeres futbolistas amateurs, en las pruebas del FMS que evalúan el control neuromuscular.

Deep squat ($P = 0.189$); Hurdle step ($P = 0.470$); Inline lunge ($P = 0.425$); Rotary stability ($P = 0.248$). Por lo que ningún valor de P es menor a $\alpha = 0.05$. Por lo tanto no existe diferencia estadística significativa.

Grafico N° 3

Pruebas de Flexibilidad de rodilla
En el gráfico N°3 se observan los valores obtenidos, por ambos grupos de mujeres futbolistas amateurs, en las pruebas del FMS que evalúan la flexibilidad de rodilla.

Deep squat (P = 0,189); Hurdle step (P = 0,470); Inline lunge (P = 0,425); ASLR (P = 0,243). Así que ningún valor de P es menor a α = 0,05. Por lo tanto no existe diferencia estadística significativa.

4. DISCUSIÓN
De acuerdo a los resultados obtenidos en esta investigación, no existe una diferencia estadística significativa en el puntaje total de la evaluación FMS (como se aprecia en la tabla N°1), así como tampoco en las pruebas que evalúan estabilidad del core, control neuromuscular y flexibilidad de rodilla entre ambos grupos (como se aprecia en los gráficos N° 1-3). Aunque en relación a los valores obtenidos, tanto en el puntaje total como en las pruebas que engloban las variables descritas anteriormente, el grupo que presento lesión de rodilla en los últimos 6 meses obtuvo un puntaje menor.

En comparación al estudio realizado por Chorba RS y cols en el 2010, nuestro estudio contó con una muestra más heterogénea en relación al tipo de lesión que presentaban las deportistas, que los resultados no hayan sido estadísticamente significativos, se puede atribuir a que las lesiones de rodilla que presentaron las participantes del grupo que presento lesión en los últimos 6 meses, fueron muy variadas dentro del espectro de lesiones de rodilla y su grado no fue de tal importancia como para alterar las variables descritas en nuestra investigación, ni tampoco el puntaje final del FMS.

En nuestra investigación 3 de las participantes del grupo que ha sufrido lesiones de rodilla en los últimos 6 meses, presentaron un puntaje total en el FMS menor o igual a 14, lo que nos indica según Cook G y cols. en los años 2010 y 2014 que estas participantes tienen un mayor riesgo de lesionarse.²⁷-²⁹, ³¹

En otros estudios similares al nuestro, con un universo de estudio similar, existe un mayor índice de riesgo de lesión en las participantes.³⁰-³² Por ejemplo el estudio realizado por Chorba RS y cols en el 2010.³³ En el cual se
observa que en un N=38 participantes, el grupo de las lesionadas compuesto por 19 jugadoras, 11 de ellas presentaron un puntaje ≤ a 14. Aunque en este estudio las lesiones que presentaron las participantes no fueron tan variadas como en el nuestro. En esta investigación hubo un grupo de 19 lesionada, donde un 40% de ellas sufrieron rotura de LCA, y como mencionamos anteriormente en nuestra investigación, esta es una lesión en donde se afecta de gran manera el control neuromuscular, 4,13,14,21 por lo que esta puede ser una de las razones por el cual en este estudio más participantes obtuvieron un puntaje menor o igual a 14.

Si bien ninguna de nuestras 2 hipótesis se cumplió, creemos que los aportes que puede entregar nuestra investigación siguen siendo importantes. Primero que todo dentro de un grupo de 14 jugadoras que han sufrido lesión en los últimos 6 meses, 3 de ellas obtuvieron un puntaje menor o igual a 14, lo que según el FMS, estas participantes tienen un mayor riesgo de lesión. Al tener estos datos de relevancia se podrá advertir a las jugadoras sobre su condición y además se podrá recomendar un plan de tratamiento y/o prevención que engloben los déficits que presenten, favoreciendo un reintegro deportivo confiable y seguro.

Otro punto relevante en nuestra investigación, es que al realizar esta evaluación funcional se obtiene el puntaje total y detalladamente el puntaje de cada una de las 7 pruebas de las 30 jugadoras. Lo que permite observar con mayor detalle los valores obtenidos en cada prueba, de esta manera se revelaría el verdadero estado de la jugadora en cuanto a su riesgo de sufrir lesiones de rodilla, dándonos la posibilidad de crear programas de prevención y de rehabilitación enfocados a los déficits específicos que nos reveló detalladamente la evaluación.

Si bien el FMS no describe cada puntaje como malo regular y bueno, pero si sabemos que un “3” es realizar el movimiento perfecto, un “2” es realizar el
movimiento con ciertas compensaciones, un “1” es la imposibilidad de realizar la prueba o realizarla con una gran cantidad de compensaciones, dependiendo de la prueba y finalmente un “0” es la imposibilidad de realizar la prueba por presencia de dolor, de esta manera se podría categorizar a las jugadoras según su condición, permitiéndonos realizar una intervención a tiempo evitando lesiones de rodilla.

a. Limitaciones

La principal limitación que encontramos en nuestro estudio es que nuestro espectro de lesiones de rodilla fue muy amplio y la gravedad de lesiones que se encontraron no fue de tal importancia como para alterar los resultados en el puntaje total del FMS, ni tampoco en las pruebas que evalúan estabilidad del core, control neuromuscular y flexibilidad de rodilla. En otros estudios se utilizaron criterios de inclusión como haber sufrido lesiones de LCA y creemos que esa fue una de las principales razones por la que en su grupo obtuvieron un mayor número de participantes con riesgo de lesión (≤ a 14).

Otra limitación encontrada en esta investigación, fue que al momento de interpretar los datos obtenidos a través de la evaluación FMS, no se logró hacer la diferencia en cuanto a si la alteración en las variables descritas en el marco teórico provocaban la lesión o si la lesión provocaba la alteración en una o más de las variables descritas.
b. Proyecciones

Proponemos para futuras investigaciones seleccionar un universo en donde exista menos variedad de lesiones de rodilla, donde uno de los criterios de inclusión sea haber sufrido algún tipo de lesión de importancia que puedan alterar las variables que mide el FMS, como por ejemplo haber sufrido una rotura de LCA. Luego tener a un grupo de mujeres que haya sufrido algún tipo de estas lesiones y por otro lado tener a un grupo control, el cual nunca haya tenido ningún tipo de lesión de EEII, y de esta manera ver las diferencias en los puntajes del FMS.

De igual manera, el cambiar la metodología de estudio y la posibilidad de realizar un estudio con un carácter longitudinal, en donde a las participantes se les evalúa a principio de años y según los resultados obtenidos se analiza en que variables que mide el FMS se encuentran bajas, y según esto se realiza un programa de prevención y rehabilitación que trate esas áreas y las optimice, para luego de cierto tiempo volver a realizar dichas pruebas y ver si existen diferencias en los puntajes obtenidos.
CONCLUSIÓN

Según los resultados obtenidos en este estudio, se rechaza nuestra hipótesis de trabajo y aceptamos la H_0, debido a que las diferencias en el puntaje obtenido entre ambos grupos de jugadoras, no fue significativo. También se rechaza nuestra H_2 y aceptamos nuestra H_0, debido a que las diferencias en los puntajes entre ambos grupos en las pruebas que miden la estabilidad del core, el control neuromuscular y flexibilidad de rodilla, no fue significativo.

Los valores de las medias para ambos grupos fueron similares, sin embargo el grupo de mujeres que presento lesión de rodilla en los últimos 6 meses, presento un menor puntaje final del FMS, y un menor puntaje en las pruebas que evalúan estabilidad del core y control neuromuscular de rodilla en comparación al otro grupo. En las pruebas de flexibilidad el promedio de los puntajes fue el mismo para ambos grupos.
BIBLIOGRAFÍA

10) Söderman K, Alfredson H, Pietilä T, Werner S. Risk factors for leg injuries in female soccer players: a prospective investigation during one out-door

ANEXOS

Anexo 1

Ficha registro participantes

A continuación llene los espacios en blanco con los datos solicitados para completar la información necesaria para esta investigación.

Nombre: __

Apellidos: __

Edad: ______ Peso: _________ Altura: ________

N° de deportes que practica: ______

Especificar cuáles:

__

__

En cuantas ligas de fútbol juega a la semana: _____

Lateralidad: _______________________

Posición: _______________________

Años en el deporte: _____

Lesiones Previas de EEII: SI ☐ NO ☐

Especificar cuáles:
__
__

Fecha de última lesión de EEII: __

Especificar lesión: ___

Se ha sometido a alguna operación: SI ☐ NO ☐

Especificar operación y fecha: ___
Anexo 2

FMS (Functional Movement Screen)

Para preparar a un atleta para la gran variedad de actividades requeridas para ya sea participar o reintegrarse a su deporte, el análisis de los movimientos fundamentales para dicho deporte se debe tener en consideración, para así poder determinar qué atletas tienen y quiénes no tienen la habilidad para ejecutar los movimientos esenciales.

Durante los últimos 20 años los profesionales dedicados a la rehabilitación deportiva han experimentado una tendencia a alejarse de lo tradicional, de las evaluaciones aisladas y del fortalecimiento, 27,28 para dar un enfoque más integrado, funcional, basado en el enfoque del movimiento, incorporando los principios de facilitación neuromuscular propioceptiva, sinergias musculares y aprendizaje motor. 30-32

Usualmente prescribir programas de fortalecimiento y acondicionamiento funciona con el fin de mejorar la agilidad, la velocidad, la potencia o la fuerza, 29 pero no existe consideración sobre la eficacia del movimiento. 27, 31 Un ejemplo sería una persona que tiene un puntaje por sobre el promedio del llamado ejercicio de abdominales “sit ups” realizados durante un test, pero su ejecución es ineficiente al compensar e iniciar el movimiento con la parte superior de su cuerpo y la columna cervical, en relación a una correcta ejecución donde el inicio del movimiento viene desde el tronco.
Los principales objetivos en la realización de un programa de pre-participación, rendimiento, o reintegro deportivo son disminuir las probabilidades de lesiones, prevenir la re-incidencia de lesiones, mejorar el rendimiento y en definitiva mejorar la calidad de vida.27, 30-32

El FMS es un sistema de análisis que intenta ayudar a los profesionales a evaluar los patrones de movimiento fundamentales de un individuo. Este sistema de selección llena el vacío entre los exámenes de pre-participación y de pruebas de rendimiento mediante la evaluación de los individuos con una mirada dinámica y funcional. Un sistema de análisis como éste, también puede ayudar a asistir en las metas que se van a proponer en un reintegro deportivo en un atleta que ya haya cumplido su protocolo de rehabilitación posterior a una lesión o cirugía.

El FMS consta de 7 patrones de movimiento fundamentales (pruebas), que requieren un balance de la movilidad y de la estabilidad (incluyendo control neuromuscular/motor). Estas pruebas están diseñadas para proveer un rendimiento observable de movimientos básicos de locomoción, manipulativos y de estabilización. Logran poner a los individuos en posiciones extremas, donde la debilidad y la falta de balance se hacen visibles si es que los individuos no poseen una buena estabilidad y movilidad. Se ha observado que individuos que compiten en pruebas de alta exigencia y duración, en cierto punto de la competencia empiezan a realizar patrones de movimiento compensatorio, sacrificando movimientos eficientes por movimientos no eficientes para poder seguir rindiendo de buena manera en su actividad. Cuando estos patrones de movimientos alcanzan este nivel de ineficiencia, llevan a una pobre biomecánica y finalmente aumentan la posibilidad de lesiones micro o macro-traumáticas.
El FMS fue diseñado para identificar sujetos que han creado patrones de movimientos compensatorios en la cadena cinética. Esta identificación se completa por el análisis de los desbalances tanto del lado derecho como del lado izquierdo, y también observando las disfunciones en la movilidad y la estabilidad del sujeto. Los 7 movimientos del FMS intentan desafiar las habilidades del cuerpo para facilitar el movimiento secuencial muscular normal, el cual la mayoría de las veces es de proximal a distal.

Puntaje del FMS.

Los puntajes van desde 0 a 3, siendo 3 el máximo puntaje a obtener. El individuo obtendrá puntaje 0 si en cualquier momento de la prueba ella/él presentan dolor en cualquier zona del cuerpo. Si el dolor aparece, se le otorga un puntaje de 0 y se deja registrada la zona del dolor. Este puntaje requerirá de una mayor asistencia por el profesional. Si el individuo no obtiene un 0, se le otorgará un puntaje de 1 si es que la persona es incapaz de completar el patrón de movimiento o es incapaz de asumir la posición para iniciar el movimiento. Un puntaje de 2 se le otorgará a la persona si es que es capaz de completar el movimiento, pero debe compensar de alguna manera para completar dicho movimiento. Un puntaje de 3 se le da a la persona que logra ejecutar el movimiento sin ninguna compensación, cumpliendo con los movimientos estándar esperados para cada prueba. “Comentarios específicos deben ser anotados explicando por qué la persona no obtuvo un puntaje de 3, en caso de que el movimiento no haya sido ejecutado correctamente o que se haya reproducido algún tipo de dolor durante la prueba”.

27, 28, 30-33
La mayoría de las pruebas del FMS examinan ambos lados del cuerpo, y es importante que ambos sean evaluados y puntuados. El puntaje más bajo entre ambos es registrado y anotado en el total; sin embargo es importante notar los desbalances que puedan existir entre un lado y otro. El mayor puntaje que se puede obtener es 21. Puntajes menores o iguales a 14 indican patrones de compensación y mayor riesgo de lesión.

El análisis del movimiento consiste en observar una serie de simples movimientos y crear un “perfil de movimientos” de lo que una persona puede y no puede realizar. Es crucial que los profesionales dedicados a la rehabilitación creen estos “perfiles de movimientos” antes de realizar alguna prueba específica del deporte o prescribir algún protocolo de ejercicios. 27, 30-32
Descripción de las pruebas del FMS.

La sentadilla profunda (The deep squat)

El individuo asume la posición inicial al ubicar sus pies al ancho de sus hombros y que se encuentren alineados con el plano sagital. Luego el individuo toma la barra por sobre la cabeza, generando un ángulo de 90° entre la barra y los codos. Posterior a esto se levanta la barra por sobre la cabeza con los hombros en flexión y abducidos y los codos extendidos. Luego al individuo se le da la orden de descender hasta donde más pueda alcanzando la posición de sentadilla y manteniendo el tronco erguido, y los talones y la barra en posición. Mantener esa posición un segundo, y luego que vuelva a la posición inicial. Se deben realizar como máximo 3 repeticiones. Si según el criterio del profesional que está tomando la prueba, no alcanza para un puntaje de “3”, se debe repetir la prueba con un bloque de 2x6 pulgadas por debajo de los talones del individuo.27, 30-32
Paso sobre obstáculo (Hurdle step)

Primero que todo el individuo asume la posición inicial poniendo sus pies juntos y sus dedos en la base del obstáculo. El obstáculo luego se ajusta a la altura de la tuberosidad anterior de la tibia (TAT) del individuo. Luego la barra se sostiene por detrás del cuello, entre los hombros. Luego al individuo se le pide que mantenga una posición erguida y que dé el paso sobre el obstáculo, levantado su pierna y manteniendo una correcta alineación entre el pie, la rodilla y la cadera y tocar el suelo con el talón (sin recibir carga) mientras se mantiene la otra pierna en una posición de extensión. La pierna en movimiento luego vuelve a su posición inicial. Esta prueba se debe realizar lentamente y con un máximo de 3 repeticiones por pierna. 27, 30-32
Estocada en línea (Inline lunge)

El evaluador mide la altura de la tibia del sujeto, ya sea midiendo del suelo hasta la TAT o ya sea midiendo la altura en la que estaba la cuerda en la prueba “Paso de obstáculo”. Al individuo se le pide que coloque el extremo de su talón en el extremo de la tabla o una cinta métrica pegado en el suelo. A continuación se aplica la medición tibial anterior desde el extremo de los dedos del pie en la tabla y se hace una marca. La barra se ubica por detrás de la espalda, tocando la cabeza, la columna torácica y el sacro. La mano opuesta al pie delantero debe estar agarrando la barra a nivel de la columna cervical. La otra mano agarra la barra a nivel de la columna lumbar. Ambos pies deben mirar hacia adelante y deben comenzar planos. Luego el individuo baja la rodilla de atrás, hasta tocar la tabla por detrás del talón de la pierna de adelante, mientras se mantiene una postura erguida y luego se vuelve a la posición inicial. La estocada se realiza lentamente, 3 veces por cada pierna. Si una repetición es realizada correctamente, se puntuara con un “3” dicha pierna. 27, 30-32
Movilidad de hombro (Shoulder mobility)

Primero el evaluador determina la longitud de la mano del atleta midiendo desde el pliegue de la muñeca, hasta la punta del dedo medio. Luego al individuo se le pide que empuñe ambas manos con el pulgar incluido dentro del puño. Luego se les pide que con un hombro realicen una máxima extensión y rotación interna y aducción y que con el otro realicen una máxima flexión, rotación externa y abducción. Durante la prueba las manos deben permanecer empuñadas, y luego deben ser colocadas en la espalda en un movimiento lento. Luego el evaluador mide la distancia entre las 2 prominencias óseas más cercanas. La prueba se realizara máximo 3 veces por lado.
Examen de compensación

Al final de la prueba se debe realizar un examen de compensación. Este movimiento no será puntuado, de hecho se realiza para observar la respuesta al dolor. Si se reproduce el dolor se le otorgara un puntaje de 0 a toda la prueba de “movilidad de hombro”. Este examen es necesario ya que los pinzamientos de hombro pueden pasar inadvertidos en la prueba de movilidad de hombro. El individuo ubica su mando en el hombro contrario y luego sube su codo apuntando hacia adelante. Si hay dolor en este movimiento se deja anotado en la hoja como positivo (+) y se le otorga un puntaje de 0. Es recomendado que una evaluación minuciosa del complejo del hombro sea realizada. Este examen se debe realizar en ambos hombros. 27, 30-32
ASLR (Active StraightLegRaise)

Primero que todo el individuo asume la posición de inicio. Se ubica supino con los brazos en posición anatómica, las piernas sobre la tabla de 2x6 pulgadas y la cabeza plana en el suelo. Luego el evaluador identifica el punto medio entre la espina iliaca antero superior (EIAS) y el punto medio de la patela, y ubica una barra en este punto perpendicular al suelo. Luego se le indica al individuo que levante la pierna lentamente con una dorsiflexión de tobillo y con la rodilla extendida. Durante la prueba la otra pierna debe permanecer en contacto con el suelo, los dedos del pie apuntando hacia arriba y la cabeza en contacto con el suelo. Una vez lograda la posición de término, observen la posición del tobillo de la pierna evaluada en relación a la pierna que no está en movimiento. Si el maléolo no pasa la barra, muevan la barra hasta igualar el maléolo y evalúen según criterio. Este criterio indica que si la pierna pasa el nivel de la barra, la participante obtiene un 3. Si la pierna no pasa la barra, hay que mover esta hasta el nivel en donde llegaron los maléolos. Si la barra se mueve hasta el nivel de la tabla de 2x6 pulgadas, la participante obtiene un 2, y si la barra queda más abajo que la tabla de 2x6 pulgadas, la participante obtiene un 1.

![Image of ASLR test](image-url)
Estabilidad de tronco empuje hacia arriba (The trunk stability push up)

El individuo asume la posición prono con los pies juntos. Las manos son ubicadas al nivel de los hombros. Durante esta prueba hombres y mujeres tienen distinta posición de inicio. Los hombres parten con los pulgares a la altura de la punta de la frente, mientras que las mujeres parten con los pulgares al nivel del mentón. Las rodillas completamente estiradas y los tobillos en dorsiflexión. Al individuo se le pide que realice un empuje hacia arriba desde esta posición. El cuerpo se debe elevar con una unidad, y no debe arquearse la columna lumbar al realizar el movimiento. Si el individuo no logra realizar el empuje hacia arriba desde esta posición, se moverán los pulgares hacia la próxima posición más fácil, en el caso de los hombres hacia el mentón y en el caso de las mujeres hacia los hombros y la prueba se realizara una vez más. La prueba se puede realizar con un máximo de 3 veces.
Examen de compensación.

Al final de la prueba se realiza un examen de compensación. Este movimiento no será puntuado; esto es un examen que se realiza con el fin de observar una respuesta al dolor. Si el dolor se reproduce, se dejará anotado en la hoja y se pondrá un puntaje de 0. Este examen es necesario ya que el dolor puede pasar desapercibido en la prueba. 27, 30-32
Estabilidad rotatoria (Rotary stability)

El individuo asume la posición cuadrúpeda, la cual es la posición de inicio. Sus hombros y caderas deben formar un ángulo de 90° en relación al torso y la tabla de 2x6 debe estar entre medio de sus manos y rodillas. Las rodillas deben estar en 90° y los tobillos en dorsiflexión. Luego el individuo realiza una flexión de hombro y una extensión de cadera y rodilla del mismo lado. La mano y el pie se elevan lo suficiente para alcanzar una distancia de 6 pulgadas desde el suelo. Luego el mismo hombro es extendido, y la rodilla doblada lo suficiente para que toque con el codo. Esto se realiza como máximo 3 veces por lado. Si el atleta no logra realizar esta maniobra, serán instruidos para que lo hagan en diagonal, es decir con el hombro de un lado y la cadera y rodilla del lado contrario, en este caso también tendrán 3 intentos por lado.
Examen de compensación

Al final de la prueba se realiza un examen de compensación. Este movimiento no será puntuado; esto es un examen que se realiza con el fin de observar una respuesta al dolor. Si el dolor se reproduce, se dejará anotado en la hoja y se pondrá un puntaje de 0. Esta prueba de evaluación es necesaria, ya que muchas veces pasa inadvertido el dolor de columna durante la prueba de estabilidad rotatoria.

El examen consiste en realizar una flexión de columna desde la posición cuadrúpeda. Las manos quedan fijas y se realiza una flexión hasta que los glúteos toquen los talones y el pecho toque los muslos. 27, 30-32
Anexo 3

CONSENTIMIENTO INFORMADO

Título del Proyecto: MUJERES FUTBOLISTAS AMATEUR FÍSICAMENTE ACTIVAS LESIONADAS Y NO LESIONADAS DE RODILLA HACE 6 MESES COMPARADAS A TRAVÉS DE UNA EVALUACIÓN FUNCIONAL.

Sra., Srta.: ……………………………………………………………………………………. ………………………………………………………………..

El propósito de este documento es entregarle toda la información necesaria para que Ud. pueda decidir libremente si desea participar en la investigación que se le ha explicado verbalmente, y que a continuación se describe en forma resumida.

Resumen del proyecto:

Lo que este estudio quiere asociar es que las mujeres que han sufrido lesiones de rodilla en los últimos 6 meses, obtendrán un menor puntaje final en el FMS y un menor puntaje en cada una de las pruebas que contiene esta evaluación funcional, en comparación al grupo de mujeres que presento lesión de rodilla en una tiempo mayor a 6 meses.

Las variables que consideramos serán la estabilidad del core, el control neuromuscular y la flexibilidad de la musculatura peri articular de rodilla.

Las participantes sólo serán citados en una oportunidad en la sala A411 de la Universidad Finis Terrae.

Las participantes serán evaluados al momento de asistir a la evaluación con ropa deportiva y no haber realizado actividad física ese día.
Si usted acepta participar en este estudio se le aplicará el test FMS que consta de 7 patrones de movimiento fundamentales (pruebas), que requieren un balance de la movilidad y de la estabilidad (incluyendo control neuromuscular/motor). Estas pruebas están diseñadas para proveer un rendimiento observable de movimientos básicos de locomoción, manipulativos y de estabilización.

Es importante señalar que todos los datos personales obtenidos son confidenciales y la muestra obtenida será utilizada exclusivamente para fines científicos. A su vez destacar que su participación es completamente voluntaria, si no desea participar del presente proyecto de investigación, su negativa no traerá ninguna consecuencia para usted.

Al respecto, expongo que:

He sido informado/a sobre el estudio a desarrollar y las eventuales molestias, incomodidades y ocasionales riesgos que la realización del procedimiento implica, previamente a su aplicación y con la descripción necesaria para conocerlas en un nivel suficiente.

He sido también informado/a en forma previa a la aplicación, que los procedimientos que se realicen, no impican un costo que yo deba asumir.

Estoy en pleno conocimiento que la información obtenida con la actividad en la cual participaré, será absolutamente confidencial, y que no aparecerá mi nombre ni mis datos personales en libros, revistas y otros medios de publicidad derivadas de la investigación ya descrita.

Adicionalmente, los investigadores responsables han manifestado su voluntad en orden a aclarar cualquier duda que me surja sobre mi participación en la actividad realizada.

He leído el documento, entiendo las declaraciones contenidas en él y la necesidad de hacer constar mi consentimiento, para lo cual lo firmo libre y voluntariamente, recibiendo en el acto copia de este documento ya firmado.
Yo, .., Cédula de identidad N°.., de nacionalidad.., mayor de edad, con domicilio en .., Con visto en participar en la investigación denominada: “Efectos del hábito tabáquico en parámetros fisiológicos en una sesión de resistencia muscular en extremidad inferior en mujeres adultos mayores entre 60 -70 años”. Y autorizo al investigador responsable del proyecto y/o a quienes éste designe como sus colaboradores directos y cuya identidad consta al pie del presente documento, para realizar el (los) procedimiento (s) requerido (s) por el proyecto de investigación descrito.

Fecha:/....../....... Hora:

Firma de la persona que confirma: ..

Investigador 1 : ____________________ ____________________

 Nombre Firma

Investigador 2 : ____________________ ____________________

 Nombre Firma

Investigador 3 : ____________________ ____________________

 Nombre Firma